Metamath Proof Explorer


Theorem abnexg

Description: Sufficient condition for a class abstraction to be a proper class. The class F can be thought of as an expression in x and the abstraction appearing in the statement as the class of values F as x varies through A . Assuming the antecedents, if that class is a set, then so is the "domain" A . The converse holds without antecedent, see abrexexg . Note that the second antecedent A. x e. A x e. F cannot be translated to A C_ F since F may depend on x . In applications, one may take F = { x } or F = ~P x (see snnex and pwnex respectively, proved from abnex , which is a consequence of abnexg with A = _V ). (Contributed by BJ, 2-Dec-2021)

Ref Expression
Assertion abnexg x A F V x F y | x A y = F W A V

Proof

Step Hyp Ref Expression
1 uniexg y | x A y = F W y | x A y = F V
2 simpl F V x F F V
3 2 ralimi x A F V x F x A F V
4 dfiun2g x A F V x A F = y | x A y = F
5 4 eleq1d x A F V x A F V y | x A y = F V
6 5 biimprd x A F V y | x A y = F V x A F V
7 3 6 syl x A F V x F y | x A y = F V x A F V
8 simpr F V x F x F
9 8 ralimi x A F V x F x A x F
10 iunid x A x = A
11 snssi x F x F
12 11 ralimi x A x F x A x F
13 ss2iun x A x F x A x x A F
14 12 13 syl x A x F x A x x A F
15 10 14 eqsstrrid x A x F A x A F
16 ssexg A x A F x A F V A V
17 16 ex A x A F x A F V A V
18 9 15 17 3syl x A F V x F x A F V A V
19 7 18 syld x A F V x F y | x A y = F V A V
20 1 19 syl5 x A F V x F y | x A y = F W A V