Metamath Proof Explorer


Theorem abnotbtaxb

Description: Assuming a, not b, there exists a proof a-xor-b.) (Contributed by Jarvin Udandy, 31-Aug-2016)

Ref Expression
Hypotheses abnotbtaxb.1 φ
abnotbtaxb.2 ¬ψ
Assertion abnotbtaxb φψ

Proof

Step Hyp Ref Expression
1 abnotbtaxb.1 φ
2 abnotbtaxb.2 ¬ψ
3 xor3 ¬φψφ¬ψ
4 pm5.1 φ¬ψφ¬ψ
5 ibibr φ¬ψφ¬ψφ¬ψφ¬ψφ¬ψ
6 4 5 mpbi φ¬ψφ¬ψφ¬ψ
7 1 2 6 mp2an φ¬ψφ¬ψ
8 3 7 bitri ¬φψφ¬ψ
9 1 2 8 mpbir2an ¬φψ
10 df-xor φψ¬φψ
11 9 10 mpbir φψ