Metamath Proof Explorer


Theorem abnotbtaxb

Description: Assuming a, not b, there exists a proof a-xor-b.) (Contributed by Jarvin Udandy, 31-Aug-2016)

Ref Expression
Hypotheses abnotbtaxb.1 𝜑
abnotbtaxb.2 ¬ 𝜓
Assertion abnotbtaxb ( 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 abnotbtaxb.1 𝜑
2 abnotbtaxb.2 ¬ 𝜓
3 xor3 ( ¬ ( 𝜑𝜓 ) ↔ ( 𝜑 ↔ ¬ 𝜓 ) )
4 pm5.1 ( ( 𝜑 ∧ ¬ 𝜓 ) → ( 𝜑 ↔ ¬ 𝜓 ) )
5 ibibr ( ( ( 𝜑 ∧ ¬ 𝜓 ) → ( 𝜑 ↔ ¬ 𝜓 ) ) ↔ ( ( 𝜑 ∧ ¬ 𝜓 ) → ( ( 𝜑 ↔ ¬ 𝜓 ) ↔ ( 𝜑 ∧ ¬ 𝜓 ) ) ) )
6 4 5 mpbi ( ( 𝜑 ∧ ¬ 𝜓 ) → ( ( 𝜑 ↔ ¬ 𝜓 ) ↔ ( 𝜑 ∧ ¬ 𝜓 ) ) )
7 1 2 6 mp2an ( ( 𝜑 ↔ ¬ 𝜓 ) ↔ ( 𝜑 ∧ ¬ 𝜓 ) )
8 3 7 bitri ( ¬ ( 𝜑𝜓 ) ↔ ( 𝜑 ∧ ¬ 𝜓 ) )
9 1 2 8 mpbir2an ¬ ( 𝜑𝜓 )
10 df-xor ( ( 𝜑𝜓 ) ↔ ¬ ( 𝜑𝜓 ) )
11 9 10 mpbir ( 𝜑𝜓 )