Description: Assuming a, not b, there exists a proof a-xor-b.) (Contributed by Jarvin Udandy, 31-Aug-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abnotbtaxb.1 | ⊢ 𝜑 | |
| abnotbtaxb.2 | ⊢ ¬ 𝜓 | ||
| Assertion | abnotbtaxb | ⊢ ( 𝜑 ⊻ 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abnotbtaxb.1 | ⊢ 𝜑 | |
| 2 | abnotbtaxb.2 | ⊢ ¬ 𝜓 | |
| 3 | xor3 | ⊢ ( ¬ ( 𝜑 ↔ 𝜓 ) ↔ ( 𝜑 ↔ ¬ 𝜓 ) ) | |
| 4 | pm5.1 | ⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → ( 𝜑 ↔ ¬ 𝜓 ) ) | |
| 5 | ibibr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝜓 ) → ( 𝜑 ↔ ¬ 𝜓 ) ) ↔ ( ( 𝜑 ∧ ¬ 𝜓 ) → ( ( 𝜑 ↔ ¬ 𝜓 ) ↔ ( 𝜑 ∧ ¬ 𝜓 ) ) ) ) | |
| 6 | 4 5 | mpbi | ⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → ( ( 𝜑 ↔ ¬ 𝜓 ) ↔ ( 𝜑 ∧ ¬ 𝜓 ) ) ) |
| 7 | 1 2 6 | mp2an | ⊢ ( ( 𝜑 ↔ ¬ 𝜓 ) ↔ ( 𝜑 ∧ ¬ 𝜓 ) ) |
| 8 | 3 7 | bitri | ⊢ ( ¬ ( 𝜑 ↔ 𝜓 ) ↔ ( 𝜑 ∧ ¬ 𝜓 ) ) |
| 9 | 1 2 8 | mpbir2an | ⊢ ¬ ( 𝜑 ↔ 𝜓 ) |
| 10 | df-xor | ⊢ ( ( 𝜑 ⊻ 𝜓 ) ↔ ¬ ( 𝜑 ↔ 𝜓 ) ) | |
| 11 | 9 10 | mpbir | ⊢ ( 𝜑 ⊻ 𝜓 ) |