Metamath Proof Explorer


Theorem abrexss

Description: A necessary condition for an image set to be a subset. (Contributed by Thierry Arnoux, 6-Feb-2017)

Ref Expression
Hypothesis abrexss.1 _xC
Assertion abrexss xABCy|xAy=BC

Proof

Step Hyp Ref Expression
1 abrexss.1 _xC
2 nfra1 xxABC
3 1 nfcri xzC
4 eleq1 z=BzCBC
5 vex zV
6 5 a1i xABCzV
7 rspa xABCxABC
8 2 3 4 6 7 elabreximd xABCzy|xAy=BzC
9 8 ex xABCzy|xAy=BzC
10 9 ssrdv xABCy|xAy=BC