Metamath Proof Explorer


Theorem abscncf

Description: Absolute value is continuous. (Contributed by Paul Chapman, 21-Oct-2007) (Revised by Mario Carneiro, 28-Apr-2014)

Ref Expression
Assertion abscncf abs:cn

Proof

Step Hyp Ref Expression
1 absf abs:
2 abscn2 xy+z+wwx<zwx<y
3 2 rgen2 xy+z+wwx<zwx<y
4 ssid
5 ax-resscn
6 elcncf2 abs:cnabs:xy+z+wwx<zwx<y
7 4 5 6 mp2an abs:cnabs:xy+z+wwx<zwx<y
8 1 3 7 mpbir2an abs:cn