Metamath Proof Explorer


Theorem absneu

Description: Restricted existential uniqueness determined by a singleton. (Contributed by NM, 29-May-2006)

Ref Expression
Assertion absneu AVx|φ=A∃!xφ

Proof

Step Hyp Ref Expression
1 sneq y=Ay=A
2 1 eqeq2d y=Ax|φ=yx|φ=A
3 2 spcegv AVx|φ=Ayx|φ=y
4 3 imp AVx|φ=Ayx|φ=y
5 euabsn2 ∃!xφyx|φ=y
6 4 5 sylibr AVx|φ=A∃!xφ