Metamath Proof Explorer


Theorem absnidd

Description: A negative number is the negative of its own absolute value. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses resqrcld.1 φA
absnidd.2 φA0
Assertion absnidd φA=A

Proof

Step Hyp Ref Expression
1 resqrcld.1 φA
2 absnidd.2 φA0
3 absnid AA0A=A
4 1 2 3 syl2anc φA=A