Metamath Proof Explorer


Theorem abvpropd2

Description: Weaker version of abvpropd . (Contributed by Thierry Arnoux, 8-Nov-2017)

Ref Expression
Hypotheses abvpropd2.1 φBaseK=BaseL
abvpropd2.2 φ+K=+L
abvpropd2.3 φK=L
Assertion abvpropd2 φAbsValK=AbsValL

Proof

Step Hyp Ref Expression
1 abvpropd2.1 φBaseK=BaseL
2 abvpropd2.2 φ+K=+L
3 abvpropd2.3 φK=L
4 eqidd φBaseK=BaseK
5 2 oveqdr φxBaseKyBaseKx+Ky=x+Ly
6 3 oveqdr φxBaseKyBaseKxKy=xLy
7 4 1 5 6 abvpropd φAbsValK=AbsValL