| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abvpropd.1 |
|
| 2 |
|
abvpropd.2 |
|
| 3 |
|
abvpropd.3 |
|
| 4 |
|
abvpropd.4 |
|
| 5 |
1 2 3 4
|
ringpropd |
|
| 6 |
1 2
|
eqtr3d |
|
| 7 |
6
|
feq2d |
|
| 8 |
1 2 3
|
grpidpropd |
|
| 9 |
8
|
adantr |
|
| 10 |
9
|
eqeq2d |
|
| 11 |
10
|
bibi2d |
|
| 12 |
4
|
fveqeq2d |
|
| 13 |
3
|
fveq2d |
|
| 14 |
13
|
breq1d |
|
| 15 |
12 14
|
anbi12d |
|
| 16 |
15
|
anassrs |
|
| 17 |
16
|
ralbidva |
|
| 18 |
11 17
|
anbi12d |
|
| 19 |
18
|
ralbidva |
|
| 20 |
1
|
raleqdv |
|
| 21 |
20
|
anbi2d |
|
| 22 |
1 21
|
raleqbidv |
|
| 23 |
2
|
raleqdv |
|
| 24 |
23
|
anbi2d |
|
| 25 |
2 24
|
raleqbidv |
|
| 26 |
19 22 25
|
3bitr3d |
|
| 27 |
7 26
|
anbi12d |
|
| 28 |
5 27
|
anbi12d |
|
| 29 |
|
eqid |
|
| 30 |
29
|
abvrcl |
|
| 31 |
|
eqid |
|
| 32 |
|
eqid |
|
| 33 |
|
eqid |
|
| 34 |
|
eqid |
|
| 35 |
29 31 32 33 34
|
isabv |
|
| 36 |
30 35
|
biadanii |
|
| 37 |
|
eqid |
|
| 38 |
37
|
abvrcl |
|
| 39 |
|
eqid |
|
| 40 |
|
eqid |
|
| 41 |
|
eqid |
|
| 42 |
|
eqid |
|
| 43 |
37 39 40 41 42
|
isabv |
|
| 44 |
38 43
|
biadanii |
|
| 45 |
28 36 44
|
3bitr4g |
|
| 46 |
45
|
eqrdv |
|