Metamath Proof Explorer


Theorem ac6

Description: Equivalent of Axiom of Choice. This is useful for proving that there exists, for example, a sequence mapping natural numbers to members of a larger set B , where ph depends on x (the natural number) and y (to specify a member of B ). A stronger version of this theorem, ac6s , allows B to be a proper class. (Contributed by NM, 18-Oct-1999) (Revised by Mario Carneiro, 27-Aug-2015)

Ref Expression
Hypotheses ac6.1 AV
ac6.2 BV
ac6.3 y=fxφψ
Assertion ac6 xAyBφff:ABxAψ

Proof

Step Hyp Ref Expression
1 ac6.1 AV
2 ac6.2 BV
3 ac6.3 y=fxφψ
4 ssrab2 yB|φB
5 4 rgenw xAyB|φB
6 iunss xAyB|φBxAyB|φB
7 5 6 mpbir xAyB|φB
8 2 7 ssexi xAyB|φV
9 numth3 xAyB|φVxAyB|φdomcard
10 8 9 ax-mp xAyB|φdomcard
11 3 ac6num AVxAyB|φdomcardxAyBφff:ABxAψ
12 1 10 11 mp3an12 xAyBφff:ABxAψ