Description: Equivalent of Axiom of Choice. This is useful for proving that there exists, for example, a sequence mapping natural numbers to members of a larger set B , where ph depends on x (the natural number) and y (to specify a member of B ). A stronger version of this theorem, ac6s , allows B to be a proper class. (Contributed by NM, 18-Oct-1999) (Revised by Mario Carneiro, 27-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ac6.1 | |- A e. _V |
|
ac6.2 | |- B e. _V |
||
ac6.3 | |- ( y = ( f ` x ) -> ( ph <-> ps ) ) |
||
Assertion | ac6 | |- ( A. x e. A E. y e. B ph -> E. f ( f : A --> B /\ A. x e. A ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ac6.1 | |- A e. _V |
|
2 | ac6.2 | |- B e. _V |
|
3 | ac6.3 | |- ( y = ( f ` x ) -> ( ph <-> ps ) ) |
|
4 | ssrab2 | |- { y e. B | ph } C_ B |
|
5 | 4 | rgenw | |- A. x e. A { y e. B | ph } C_ B |
6 | iunss | |- ( U_ x e. A { y e. B | ph } C_ B <-> A. x e. A { y e. B | ph } C_ B ) |
|
7 | 5 6 | mpbir | |- U_ x e. A { y e. B | ph } C_ B |
8 | 2 7 | ssexi | |- U_ x e. A { y e. B | ph } e. _V |
9 | numth3 | |- ( U_ x e. A { y e. B | ph } e. _V -> U_ x e. A { y e. B | ph } e. dom card ) |
|
10 | 8 9 | ax-mp | |- U_ x e. A { y e. B | ph } e. dom card |
11 | 3 | ac6num | |- ( ( A e. _V /\ U_ x e. A { y e. B | ph } e. dom card /\ A. x e. A E. y e. B ph ) -> E. f ( f : A --> B /\ A. x e. A ps ) ) |
12 | 1 10 11 | mp3an12 | |- ( A. x e. A E. y e. B ph -> E. f ( f : A --> B /\ A. x e. A ps ) ) |