Metamath Proof Explorer


Theorem ac6mapd

Description: Axiom of choice equivalent, deduction form. (Contributed by Thierry Arnoux, 13-Oct-2025)

Ref Expression
Hypotheses ac6mapd.1 y = f x ψ χ
ac6mapd.2 φ A V
ac6mapd.3 φ B W
ac6mapd.4 φ x A y B ψ
Assertion ac6mapd φ f B A x A χ

Proof

Step Hyp Ref Expression
1 ac6mapd.1 y = f x ψ χ
2 ac6mapd.2 φ A V
3 ac6mapd.3 φ B W
4 ac6mapd.4 φ x A y B ψ
5 4 ralrimiva φ x A y B ψ
6 1 ac6sg A V x A y B ψ f f : A B x A χ
7 2 5 6 sylc φ f f : A B x A χ
8 3 2 elmapd φ f B A f : A B
9 8 biimprd φ f : A B f B A
10 9 anim1d φ f : A B x A χ f B A x A χ
11 10 eximdv φ f f : A B x A χ f f B A x A χ
12 7 11 mpd φ f f B A x A χ
13 df-rex f B A x A χ f f B A x A χ
14 12 13 sylibr φ f B A x A χ