| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ac6mapd.1 |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝜓 ↔ 𝜒 ) ) |
| 2 |
|
ac6mapd.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 3 |
|
ac6mapd.3 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
| 4 |
|
ac6mapd.4 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ 𝐵 𝜓 ) |
| 5 |
4
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜓 ) |
| 6 |
1
|
ac6sg |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜓 → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜒 ) ) ) |
| 7 |
2 5 6
|
sylc |
⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜒 ) ) |
| 8 |
3 2
|
elmapd |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ↔ 𝑓 : 𝐴 ⟶ 𝐵 ) ) |
| 9 |
8
|
biimprd |
⊢ ( 𝜑 → ( 𝑓 : 𝐴 ⟶ 𝐵 → 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ) ) |
| 10 |
9
|
anim1d |
⊢ ( 𝜑 → ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜒 ) → ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 𝜒 ) ) ) |
| 11 |
10
|
eximdv |
⊢ ( 𝜑 → ( ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝜒 ) → ∃ 𝑓 ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 𝜒 ) ) ) |
| 12 |
7 11
|
mpd |
⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 𝜒 ) ) |
| 13 |
|
df-rex |
⊢ ( ∃ 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∀ 𝑥 ∈ 𝐴 𝜒 ↔ ∃ 𝑓 ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∧ ∀ 𝑥 ∈ 𝐴 𝜒 ) ) |
| 14 |
12 13
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ∀ 𝑥 ∈ 𝐴 𝜒 ) |