Metamath Proof Explorer


Theorem ac6sf

Description: Version of ac6 with bound-variable hypothesis. (Contributed by NM, 2-Mar-2008)

Ref Expression
Hypotheses ac6sf.1 yψ
ac6sf.2 AV
ac6sf.3 y=fxφψ
Assertion ac6sf xAyBφff:ABxAψ

Proof

Step Hyp Ref Expression
1 ac6sf.1 yψ
2 ac6sf.2 AV
3 ac6sf.3 y=fxφψ
4 cbvrexsvw yBφzBzyφ
5 4 ralbii xAyBφxAzBzyφ
6 1 3 sbhypf z=fxzyφψ
7 2 6 ac6s xAzBzyφff:ABxAψ
8 5 7 sylbi xAyBφff:ABxAψ