Metamath Proof Explorer


Theorem ackbij1lem1

Description: Lemma for ackbij2 . (Contributed by Stefan O'Rear, 18-Nov-2014)

Ref Expression
Assertion ackbij1lem1 ¬ABBsucA=BA

Proof

Step Hyp Ref Expression
1 df-suc sucA=AA
2 1 ineq2i BsucA=BAA
3 indi BAA=BABA
4 2 3 eqtri BsucA=BABA
5 disjsn BA=¬AB
6 5 biimpri ¬ABBA=
7 6 uneq2d ¬ABBABA=BA
8 un0 BA=BA
9 7 8 eqtrdi ¬ABBABA=BA
10 4 9 eqtrid ¬ABBsucA=BA