Metamath Proof Explorer


Theorem ackbij1lem7

Description: Lemma for ackbij1 . (Contributed by Stefan O'Rear, 21-Nov-2014)

Ref Expression
Hypothesis ackbij.f F=x𝒫ωFincardyxy×𝒫y
Assertion ackbij1lem7 A𝒫ωFinFA=cardyAy×𝒫y

Proof

Step Hyp Ref Expression
1 ackbij.f F=x𝒫ωFincardyxy×𝒫y
2 iuneq1 x=Ayxy×𝒫y=yAy×𝒫y
3 2 fveq2d x=Acardyxy×𝒫y=cardyAy×𝒫y
4 fvex cardyAy×𝒫yV
5 3 1 4 fvmpt A𝒫ωFinFA=cardyAy×𝒫y