| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ackbij.f |
|
| 2 |
1
|
ackbij1lem17 |
|
| 3 |
|
f1f |
|
| 4 |
|
frn |
|
| 5 |
2 3 4
|
mp2b |
|
| 6 |
|
eleq1 |
|
| 7 |
|
eleq1 |
|
| 8 |
|
eleq1 |
|
| 9 |
|
peano1 |
|
| 10 |
|
ackbij1lem3 |
|
| 11 |
9 10
|
ax-mp |
|
| 12 |
1
|
ackbij1lem13 |
|
| 13 |
|
fveqeq2 |
|
| 14 |
13
|
rspcev |
|
| 15 |
11 12 14
|
mp2an |
|
| 16 |
|
f1fn |
|
| 17 |
2 16
|
ax-mp |
|
| 18 |
|
fvelrnb |
|
| 19 |
17 18
|
ax-mp |
|
| 20 |
15 19
|
mpbir |
|
| 21 |
1
|
ackbij1lem18 |
|
| 22 |
21
|
adantl |
|
| 23 |
|
suceq |
|
| 24 |
23
|
eqeq2d |
|
| 25 |
24
|
rexbidv |
|
| 26 |
22 25
|
syl5ibcom |
|
| 27 |
26
|
rexlimdva |
|
| 28 |
|
fvelrnb |
|
| 29 |
17 28
|
ax-mp |
|
| 30 |
|
fvelrnb |
|
| 31 |
17 30
|
ax-mp |
|
| 32 |
27 29 31
|
3imtr4g |
|
| 33 |
6 7 8 7 20 32
|
finds |
|
| 34 |
33
|
ssriv |
|
| 35 |
5 34
|
eqssi |
|
| 36 |
|
dff1o5 |
|
| 37 |
2 35 36
|
mpbir2an |
|