Metamath Proof Explorer


Theorem ackbij1lem17

Description: Lemma for ackbij1 . (Contributed by Stefan O'Rear, 18-Nov-2014)

Ref Expression
Hypothesis ackbij.f F=x𝒫ωFincardyxy×𝒫y
Assertion ackbij1lem17 F:𝒫ωFin1-1ω

Proof

Step Hyp Ref Expression
1 ackbij.f F=x𝒫ωFincardyxy×𝒫y
2 1 ackbij1lem10 F:𝒫ωFinω
3 1 ackbij1lem16 a𝒫ωFinb𝒫ωFinFa=Fba=b
4 3 rgen2 a𝒫ωFinb𝒫ωFinFa=Fba=b
5 dff13 F:𝒫ωFin1-1ωF:𝒫ωFinωa𝒫ωFinb𝒫ωFinFa=Fba=b
6 2 4 5 mpbir2an F:𝒫ωFin1-1ω