Step |
Hyp |
Ref |
Expression |
1 |
|
ackbij.f |
⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) |
2 |
1
|
ackbij1lem10 |
⊢ 𝐹 : ( 𝒫 ω ∩ Fin ) ⟶ ω |
3 |
1
|
ackbij1lem16 |
⊢ ( ( 𝑎 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝑏 ∈ ( 𝒫 ω ∩ Fin ) ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) |
4 |
3
|
rgen2 |
⊢ ∀ 𝑎 ∈ ( 𝒫 ω ∩ Fin ) ∀ 𝑏 ∈ ( 𝒫 ω ∩ Fin ) ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → 𝑎 = 𝑏 ) |
5 |
|
dff13 |
⊢ ( 𝐹 : ( 𝒫 ω ∩ Fin ) –1-1→ ω ↔ ( 𝐹 : ( 𝒫 ω ∩ Fin ) ⟶ ω ∧ ∀ 𝑎 ∈ ( 𝒫 ω ∩ Fin ) ∀ 𝑏 ∈ ( 𝒫 ω ∩ Fin ) ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) ) |
6 |
2 4 5
|
mpbir2an |
⊢ 𝐹 : ( 𝒫 ω ∩ Fin ) –1-1→ ω |