Metamath Proof Explorer


Theorem ackbij1lem17

Description: Lemma for ackbij1 . (Contributed by Stefan O'Rear, 18-Nov-2014)

Ref Expression
Hypothesis ackbij.f 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ 𝑦𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) )
Assertion ackbij1lem17 𝐹 : ( 𝒫 ω ∩ Fin ) –1-1→ ω

Proof

Step Hyp Ref Expression
1 ackbij.f 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ 𝑦𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) )
2 1 ackbij1lem10 𝐹 : ( 𝒫 ω ∩ Fin ) ⟶ ω
3 1 ackbij1lem16 ( ( 𝑎 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝑏 ∈ ( 𝒫 ω ∩ Fin ) ) → ( ( 𝐹𝑎 ) = ( 𝐹𝑏 ) → 𝑎 = 𝑏 ) )
4 3 rgen2 𝑎 ∈ ( 𝒫 ω ∩ Fin ) ∀ 𝑏 ∈ ( 𝒫 ω ∩ Fin ) ( ( 𝐹𝑎 ) = ( 𝐹𝑏 ) → 𝑎 = 𝑏 )
5 dff13 ( 𝐹 : ( 𝒫 ω ∩ Fin ) –1-1→ ω ↔ ( 𝐹 : ( 𝒫 ω ∩ Fin ) ⟶ ω ∧ ∀ 𝑎 ∈ ( 𝒫 ω ∩ Fin ) ∀ 𝑏 ∈ ( 𝒫 ω ∩ Fin ) ( ( 𝐹𝑎 ) = ( 𝐹𝑏 ) → 𝑎 = 𝑏 ) ) )
6 2 4 5 mpbir2an 𝐹 : ( 𝒫 ω ∩ Fin ) –1-1→ ω