Database BASIC ORDER THEORY Lattices Subset order structures acsficld  
				
		 
		
			
		 
		Description:   In an algebraic closure system, the closure of a set is the union of the
       closures of its finite subsets.  Deduction form of acsficl  .
       (Contributed by David Moews , 1-May-2017) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						acsficld.1    ⊢   φ   →   A  ∈   ACS  ⁡  X          
					 
					
						acsficld.2   ⊢   N  =   mrCls  ⁡  A        
					 
					
						acsficld.3    ⊢   φ   →   S  ⊆  X         
					 
				
					Assertion 
					acsficld    ⊢   φ   →    N  ⁡  S   =   ⋃   N    𝒫  S    ∩  Fin              
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							acsficld.1   ⊢   φ   →   A  ∈   ACS  ⁡  X          
						
							2 
								
							 
							acsficld.2  ⊢   N  =   mrCls  ⁡  A        
						
							3 
								
							 
							acsficld.3   ⊢   φ   →   S  ⊆  X         
						
							4 
								2 
							 
							acsficl   ⊢    A  ∈   ACS  ⁡  X     ∧   S  ⊆  X     →    N  ⁡  S   =   ⋃   N    𝒫  S    ∩  Fin              
						
							5 
								1  3  4 
							 
							syl2anc   ⊢   φ   →    N  ⁡  S   =   ⋃   N    𝒫  S    ∩  Fin