Metamath Proof Explorer


Theorem acsficl2d

Description: In an algebraic closure system, an element is in the closure of a set if and only if it is in the closure of a finite subset. Alternate form of acsficl . Deduction form. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses acsficld.1 φAACSX
acsficld.2 N=mrClsA
acsficld.3 φSX
Assertion acsficl2d φYNSx𝒫SFinYNx

Proof

Step Hyp Ref Expression
1 acsficld.1 φAACSX
2 acsficld.2 N=mrClsA
3 acsficld.3 φSX
4 1 2 3 acsficld φNS=N𝒫SFin
5 4 eleq2d φYNSYN𝒫SFin
6 1 acsmred φAMooreX
7 funmpt Funz𝒫XwA|zw
8 2 mrcfval AMooreXN=z𝒫XwA|zw
9 8 funeqd AMooreXFunNFunz𝒫XwA|zw
10 7 9 mpbiri AMooreXFunN
11 eluniima FunNYN𝒫SFinx𝒫SFinYNx
12 6 10 11 3syl φYN𝒫SFinx𝒫SFinYNx
13 5 12 bitrd φYNSx𝒫SFinYNx