| Step |
Hyp |
Ref |
Expression |
| 1 |
|
acsfiindd.1 |
|
| 2 |
|
acsfiindd.2 |
|
| 3 |
|
acsfiindd.3 |
|
| 4 |
|
acsfiindd.4 |
|
| 5 |
1
|
acsmred |
|
| 6 |
5
|
ad2antrr |
|
| 7 |
|
simplr |
|
| 8 |
|
simpr |
|
| 9 |
8
|
elin1d |
|
| 10 |
9
|
elpwid |
|
| 11 |
6 2 3 7 10
|
mrissmrid |
|
| 12 |
11
|
ralrimiva |
|
| 13 |
|
dfss3 |
|
| 14 |
12 13
|
sylibr |
|
| 15 |
5
|
adantr |
|
| 16 |
4
|
adantr |
|
| 17 |
|
simpr |
|
| 18 |
|
elfpw |
|
| 19 |
17 18
|
sylib |
|
| 20 |
19
|
simpld |
|
| 21 |
20
|
difss2d |
|
| 22 |
|
simplr |
|
| 23 |
22
|
snssd |
|
| 24 |
21 23
|
unssd |
|
| 25 |
19
|
simprd |
|
| 26 |
|
snfi |
|
| 27 |
|
unfi |
|
| 28 |
25 26 27
|
sylancl |
|
| 29 |
|
elfpw |
|
| 30 |
24 28 29
|
sylanbrc |
|
| 31 |
5
|
ad4antr |
|
| 32 |
|
simpr |
|
| 33 |
|
simpllr |
|
| 34 |
|
snidg |
|
| 35 |
|
elun2 |
|
| 36 |
33 34 35
|
3syl |
|
| 37 |
|
simpr |
|
| 38 |
36 37
|
eleqtrrd |
|
| 39 |
38
|
adantr |
|
| 40 |
2 3 31 32 39
|
ismri2dad |
|
| 41 |
5
|
ad3antrrr |
|
| 42 |
20
|
adantr |
|
| 43 |
|
neldifsnd |
|
| 44 |
42 43
|
ssneldd |
|
| 45 |
|
difsnb |
|
| 46 |
44 45
|
sylib |
|
| 47 |
|
ssun1 |
|
| 48 |
47 37
|
sseqtrrid |
|
| 49 |
48
|
ssdifd |
|
| 50 |
46 49
|
eqsstrrd |
|
| 51 |
24
|
adantr |
|
| 52 |
4
|
ad3antrrr |
|
| 53 |
51 52
|
sstrd |
|
| 54 |
37 53
|
eqsstrd |
|
| 55 |
54
|
ssdifssd |
|
| 56 |
41 2 50 55
|
mrcssd |
|
| 57 |
56
|
sseld |
|
| 58 |
57
|
adantr |
|
| 59 |
40 58
|
mtod |
|
| 60 |
59
|
ex |
|
| 61 |
30 60
|
rspcimdv |
|
| 62 |
13 61
|
biimtrid |
|
| 63 |
62
|
impancom |
|
| 64 |
63
|
ralrimiv |
|
| 65 |
4
|
ssdifssd |
|
| 66 |
1 2 65
|
acsficl2d |
|
| 67 |
66
|
notbid |
|
| 68 |
|
ralnex |
|
| 69 |
67 68
|
bitr4di |
|
| 70 |
69
|
ad2antrr |
|
| 71 |
64 70
|
mpbird |
|
| 72 |
71
|
an32s |
|
| 73 |
72
|
ralrimiva |
|
| 74 |
2 3 15 16 73
|
ismri2dd |
|
| 75 |
14 74
|
impbida |
|