Metamath Proof Explorer


Theorem ismri2dd

Description: Definition of independence of a subset of the base set in a Moore system. One-way deduction form. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses ismri2.1 N=mrClsA
ismri2.2 I=mrIndA
ismri2d.3 φAMooreX
ismri2d.4 φSX
ismri2dd.5 φxS¬xNSx
Assertion ismri2dd φSI

Proof

Step Hyp Ref Expression
1 ismri2.1 N=mrClsA
2 ismri2.2 I=mrIndA
3 ismri2d.3 φAMooreX
4 ismri2d.4 φSX
5 ismri2dd.5 φxS¬xNSx
6 1 2 3 4 ismri2d φSIxS¬xNSx
7 5 6 mpbird φSI