Metamath Proof Explorer


Theorem ismri2d

Description: Criterion for a subset of the base set in a Moore system to be independent. Deduction form. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses ismri2.1 N=mrClsA
ismri2.2 I=mrIndA
ismri2d.3 φAMooreX
ismri2d.4 φSX
Assertion ismri2d φSIxS¬xNSx

Proof

Step Hyp Ref Expression
1 ismri2.1 N=mrClsA
2 ismri2.2 I=mrIndA
3 ismri2d.3 φAMooreX
4 ismri2d.4 φSX
5 1 2 ismri2 AMooreXSXSIxS¬xNSx
6 3 4 5 syl2anc φSIxS¬xNSx