| Step |
Hyp |
Ref |
Expression |
| 1 |
|
acsmapd.1 |
|
| 2 |
|
acsmapd.2 |
|
| 3 |
|
acsmapd.3 |
|
| 4 |
|
acsmapd.4 |
|
| 5 |
|
fvex |
|
| 6 |
5
|
ssex |
|
| 7 |
4 6
|
syl |
|
| 8 |
4
|
sseld |
|
| 9 |
1 2 3
|
acsficl2d |
|
| 10 |
8 9
|
sylibd |
|
| 11 |
10
|
ralrimiv |
|
| 12 |
|
fveq2 |
|
| 13 |
12
|
eleq2d |
|
| 14 |
13
|
ac6sg |
|
| 15 |
7 11 14
|
sylc |
|
| 16 |
|
simprl |
|
| 17 |
|
nfv |
|
| 18 |
|
nfv |
|
| 19 |
|
nfra1 |
|
| 20 |
18 19
|
nfan |
|
| 21 |
17 20
|
nfan |
|
| 22 |
1
|
ad2antrr |
|
| 23 |
22
|
acsmred |
|
| 24 |
|
simplrl |
|
| 25 |
24
|
ffnd |
|
| 26 |
|
fnfvelrn |
|
| 27 |
25 26
|
sylancom |
|
| 28 |
27
|
snssd |
|
| 29 |
28
|
unissd |
|
| 30 |
|
frn |
|
| 31 |
30
|
unissd |
|
| 32 |
|
unifpw |
|
| 33 |
31 32
|
sseqtrdi |
|
| 34 |
24 33
|
syl |
|
| 35 |
3
|
ad2antrr |
|
| 36 |
34 35
|
sstrd |
|
| 37 |
23 2 29 36
|
mrcssd |
|
| 38 |
|
simprr |
|
| 39 |
38
|
r19.21bi |
|
| 40 |
|
fvex |
|
| 41 |
40
|
unisn |
|
| 42 |
41
|
fveq2i |
|
| 43 |
39 42
|
eleqtrrdi |
|
| 44 |
37 43
|
sseldd |
|
| 45 |
44
|
ex |
|
| 46 |
21 45
|
alrimi |
|
| 47 |
|
df-ss |
|
| 48 |
46 47
|
sylibr |
|
| 49 |
16 48
|
jca |
|
| 50 |
49
|
ex |
|
| 51 |
50
|
eximdv |
|
| 52 |
15 51
|
mpd |
|