| Step |
Hyp |
Ref |
Expression |
| 1 |
|
acsmapd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ( ACS ‘ 𝑋 ) ) |
| 2 |
|
acsmapd.2 |
⊢ 𝑁 = ( mrCls ‘ 𝐴 ) |
| 3 |
|
acsmapd.3 |
⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) |
| 4 |
|
acsmapd.4 |
⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑁 ‘ 𝑆 ) ) |
| 5 |
|
fvex |
⊢ ( 𝑁 ‘ 𝑆 ) ∈ V |
| 6 |
5
|
ssex |
⊢ ( 𝑇 ⊆ ( 𝑁 ‘ 𝑆 ) → 𝑇 ∈ V ) |
| 7 |
4 6
|
syl |
⊢ ( 𝜑 → 𝑇 ∈ V ) |
| 8 |
4
|
sseld |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑇 → 𝑥 ∈ ( 𝑁 ‘ 𝑆 ) ) ) |
| 9 |
1 2 3
|
acsficl2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑁 ‘ 𝑆 ) ↔ ∃ 𝑦 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑥 ∈ ( 𝑁 ‘ 𝑦 ) ) ) |
| 10 |
8 9
|
sylibd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑇 → ∃ 𝑦 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑥 ∈ ( 𝑁 ‘ 𝑦 ) ) ) |
| 11 |
10
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑥 ∈ ( 𝑁 ‘ 𝑦 ) ) |
| 12 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑁 ‘ 𝑦 ) = ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
| 13 |
12
|
eleq2d |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑥 ∈ ( 𝑁 ‘ 𝑦 ) ↔ 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) |
| 14 |
13
|
ac6sg |
⊢ ( 𝑇 ∈ V → ( ∀ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑥 ∈ ( 𝑁 ‘ 𝑦 ) → ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) |
| 15 |
7 11 14
|
sylc |
⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) |
| 16 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) → 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ) |
| 17 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
| 18 |
|
nfv |
⊢ Ⅎ 𝑥 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) |
| 19 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) |
| 20 |
18 19
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
| 21 |
17 20
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) |
| 22 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ∧ 𝑥 ∈ 𝑇 ) → 𝐴 ∈ ( ACS ‘ 𝑋 ) ) |
| 23 |
22
|
acsmred |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ∧ 𝑥 ∈ 𝑇 ) → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
| 24 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ∧ 𝑥 ∈ 𝑇 ) → 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ) |
| 25 |
24
|
ffnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ∧ 𝑥 ∈ 𝑇 ) → 𝑓 Fn 𝑇 ) |
| 26 |
|
fnfvelrn |
⊢ ( ( 𝑓 Fn 𝑇 ∧ 𝑥 ∈ 𝑇 ) → ( 𝑓 ‘ 𝑥 ) ∈ ran 𝑓 ) |
| 27 |
25 26
|
sylancom |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ∧ 𝑥 ∈ 𝑇 ) → ( 𝑓 ‘ 𝑥 ) ∈ ran 𝑓 ) |
| 28 |
27
|
snssd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ∧ 𝑥 ∈ 𝑇 ) → { ( 𝑓 ‘ 𝑥 ) } ⊆ ran 𝑓 ) |
| 29 |
28
|
unissd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ∧ 𝑥 ∈ 𝑇 ) → ∪ { ( 𝑓 ‘ 𝑥 ) } ⊆ ∪ ran 𝑓 ) |
| 30 |
|
frn |
⊢ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) → ran 𝑓 ⊆ ( 𝒫 𝑆 ∩ Fin ) ) |
| 31 |
30
|
unissd |
⊢ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) → ∪ ran 𝑓 ⊆ ∪ ( 𝒫 𝑆 ∩ Fin ) ) |
| 32 |
|
unifpw |
⊢ ∪ ( 𝒫 𝑆 ∩ Fin ) = 𝑆 |
| 33 |
31 32
|
sseqtrdi |
⊢ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) → ∪ ran 𝑓 ⊆ 𝑆 ) |
| 34 |
24 33
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ∧ 𝑥 ∈ 𝑇 ) → ∪ ran 𝑓 ⊆ 𝑆 ) |
| 35 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ∧ 𝑥 ∈ 𝑇 ) → 𝑆 ⊆ 𝑋 ) |
| 36 |
34 35
|
sstrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ∧ 𝑥 ∈ 𝑇 ) → ∪ ran 𝑓 ⊆ 𝑋 ) |
| 37 |
23 2 29 36
|
mrcssd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ∧ 𝑥 ∈ 𝑇 ) → ( 𝑁 ‘ ∪ { ( 𝑓 ‘ 𝑥 ) } ) ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) |
| 38 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) → ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
| 39 |
38
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ∧ 𝑥 ∈ 𝑇 ) → 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
| 40 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑥 ) ∈ V |
| 41 |
40
|
unisn |
⊢ ∪ { ( 𝑓 ‘ 𝑥 ) } = ( 𝑓 ‘ 𝑥 ) |
| 42 |
41
|
fveq2i |
⊢ ( 𝑁 ‘ ∪ { ( 𝑓 ‘ 𝑥 ) } ) = ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) |
| 43 |
39 42
|
eleqtrrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ∧ 𝑥 ∈ 𝑇 ) → 𝑥 ∈ ( 𝑁 ‘ ∪ { ( 𝑓 ‘ 𝑥 ) } ) ) |
| 44 |
37 43
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ∧ 𝑥 ∈ 𝑇 ) → 𝑥 ∈ ( 𝑁 ‘ ∪ ran 𝑓 ) ) |
| 45 |
44
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) → ( 𝑥 ∈ 𝑇 → 𝑥 ∈ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) |
| 46 |
21 45
|
alrimi |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) → ∀ 𝑥 ( 𝑥 ∈ 𝑇 → 𝑥 ∈ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) |
| 47 |
|
df-ss |
⊢ ( 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑇 → 𝑥 ∈ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) |
| 48 |
46 47
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) → 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) |
| 49 |
16 48
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) → ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) |
| 50 |
49
|
ex |
⊢ ( 𝜑 → ( ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) → ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) ) |
| 51 |
50
|
eximdv |
⊢ ( 𝜑 → ( ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) → ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) ) |
| 52 |
15 51
|
mpd |
⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) |