Step |
Hyp |
Ref |
Expression |
1 |
|
acsmapd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ( ACS ‘ 𝑋 ) ) |
2 |
|
acsmapd.2 |
⊢ 𝑁 = ( mrCls ‘ 𝐴 ) |
3 |
|
acsmapd.3 |
⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) |
4 |
|
acsmapd.4 |
⊢ ( 𝜑 → 𝑇 ⊆ ( 𝑁 ‘ 𝑆 ) ) |
5 |
|
fvex |
⊢ ( 𝑁 ‘ 𝑆 ) ∈ V |
6 |
5
|
ssex |
⊢ ( 𝑇 ⊆ ( 𝑁 ‘ 𝑆 ) → 𝑇 ∈ V ) |
7 |
4 6
|
syl |
⊢ ( 𝜑 → 𝑇 ∈ V ) |
8 |
4
|
sseld |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑇 → 𝑥 ∈ ( 𝑁 ‘ 𝑆 ) ) ) |
9 |
1 2 3
|
acsficl2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑁 ‘ 𝑆 ) ↔ ∃ 𝑦 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑥 ∈ ( 𝑁 ‘ 𝑦 ) ) ) |
10 |
8 9
|
sylibd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑇 → ∃ 𝑦 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑥 ∈ ( 𝑁 ‘ 𝑦 ) ) ) |
11 |
10
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑥 ∈ ( 𝑁 ‘ 𝑦 ) ) |
12 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑁 ‘ 𝑦 ) = ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
13 |
12
|
eleq2d |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑥 ) → ( 𝑥 ∈ ( 𝑁 ‘ 𝑦 ) ↔ 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) |
14 |
13
|
ac6sg |
⊢ ( 𝑇 ∈ V → ( ∀ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ ( 𝒫 𝑆 ∩ Fin ) 𝑥 ∈ ( 𝑁 ‘ 𝑦 ) → ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ) |
15 |
7 11 14
|
sylc |
⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) |
16 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) → 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ) |
17 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
18 |
|
nfv |
⊢ Ⅎ 𝑥 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) |
19 |
|
nfra1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) |
20 |
18 19
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
21 |
17 20
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) |
22 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ∧ 𝑥 ∈ 𝑇 ) → 𝐴 ∈ ( ACS ‘ 𝑋 ) ) |
23 |
22
|
acsmred |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ∧ 𝑥 ∈ 𝑇 ) → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
24 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ∧ 𝑥 ∈ 𝑇 ) → 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ) |
25 |
24
|
ffnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ∧ 𝑥 ∈ 𝑇 ) → 𝑓 Fn 𝑇 ) |
26 |
|
fnfvelrn |
⊢ ( ( 𝑓 Fn 𝑇 ∧ 𝑥 ∈ 𝑇 ) → ( 𝑓 ‘ 𝑥 ) ∈ ran 𝑓 ) |
27 |
25 26
|
sylancom |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ∧ 𝑥 ∈ 𝑇 ) → ( 𝑓 ‘ 𝑥 ) ∈ ran 𝑓 ) |
28 |
27
|
snssd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ∧ 𝑥 ∈ 𝑇 ) → { ( 𝑓 ‘ 𝑥 ) } ⊆ ran 𝑓 ) |
29 |
28
|
unissd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ∧ 𝑥 ∈ 𝑇 ) → ∪ { ( 𝑓 ‘ 𝑥 ) } ⊆ ∪ ran 𝑓 ) |
30 |
|
frn |
⊢ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) → ran 𝑓 ⊆ ( 𝒫 𝑆 ∩ Fin ) ) |
31 |
30
|
unissd |
⊢ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) → ∪ ran 𝑓 ⊆ ∪ ( 𝒫 𝑆 ∩ Fin ) ) |
32 |
|
unifpw |
⊢ ∪ ( 𝒫 𝑆 ∩ Fin ) = 𝑆 |
33 |
31 32
|
sseqtrdi |
⊢ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) → ∪ ran 𝑓 ⊆ 𝑆 ) |
34 |
24 33
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ∧ 𝑥 ∈ 𝑇 ) → ∪ ran 𝑓 ⊆ 𝑆 ) |
35 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ∧ 𝑥 ∈ 𝑇 ) → 𝑆 ⊆ 𝑋 ) |
36 |
34 35
|
sstrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ∧ 𝑥 ∈ 𝑇 ) → ∪ ran 𝑓 ⊆ 𝑋 ) |
37 |
23 2 29 36
|
mrcssd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ∧ 𝑥 ∈ 𝑇 ) → ( 𝑁 ‘ ∪ { ( 𝑓 ‘ 𝑥 ) } ) ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) |
38 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) → ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
39 |
38
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ∧ 𝑥 ∈ 𝑇 ) → 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
40 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑥 ) ∈ V |
41 |
40
|
unisn |
⊢ ∪ { ( 𝑓 ‘ 𝑥 ) } = ( 𝑓 ‘ 𝑥 ) |
42 |
41
|
fveq2i |
⊢ ( 𝑁 ‘ ∪ { ( 𝑓 ‘ 𝑥 ) } ) = ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) |
43 |
39 42
|
eleqtrrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ∧ 𝑥 ∈ 𝑇 ) → 𝑥 ∈ ( 𝑁 ‘ ∪ { ( 𝑓 ‘ 𝑥 ) } ) ) |
44 |
37 43
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) ∧ 𝑥 ∈ 𝑇 ) → 𝑥 ∈ ( 𝑁 ‘ ∪ ran 𝑓 ) ) |
45 |
44
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) → ( 𝑥 ∈ 𝑇 → 𝑥 ∈ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) |
46 |
21 45
|
alrimi |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) → ∀ 𝑥 ( 𝑥 ∈ 𝑇 → 𝑥 ∈ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) |
47 |
|
dfss2 |
⊢ ( 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑇 → 𝑥 ∈ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) |
48 |
46 47
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) → 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) |
49 |
16 48
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) ) → ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) |
50 |
49
|
ex |
⊢ ( 𝜑 → ( ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) → ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) ) |
51 |
50
|
eximdv |
⊢ ( 𝜑 → ( ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝑇 𝑥 ∈ ( 𝑁 ‘ ( 𝑓 ‘ 𝑥 ) ) ) → ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) ) |
52 |
15 51
|
mpd |
⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ‘ ∪ ran 𝑓 ) ) ) |