Metamath Proof Explorer


Theorem acsmap2d

Description: In an algebraic closure system, if S and T have the same closure and S is independent, then there is a map f from T into the set of finite subsets of S such that S equals the union of ran f . This is proven by taking the map f from acsmapd and observing that, since S and T have the same closure, the closure of U. ran f must contain S . Since S is independent, by mrissmrcd , U. ran f must equal S . See Section II.5 in Cohn p. 81 to 82. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses acsmap2d.1 ( 𝜑𝐴 ∈ ( ACS ‘ 𝑋 ) )
acsmap2d.2 𝑁 = ( mrCls ‘ 𝐴 )
acsmap2d.3 𝐼 = ( mrInd ‘ 𝐴 )
acsmap2d.4 ( 𝜑𝑆𝐼 )
acsmap2d.5 ( 𝜑𝑇𝑋 )
acsmap2d.6 ( 𝜑 → ( 𝑁𝑆 ) = ( 𝑁𝑇 ) )
Assertion acsmap2d ( 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ran 𝑓 ) )

Proof

Step Hyp Ref Expression
1 acsmap2d.1 ( 𝜑𝐴 ∈ ( ACS ‘ 𝑋 ) )
2 acsmap2d.2 𝑁 = ( mrCls ‘ 𝐴 )
3 acsmap2d.3 𝐼 = ( mrInd ‘ 𝐴 )
4 acsmap2d.4 ( 𝜑𝑆𝐼 )
5 acsmap2d.5 ( 𝜑𝑇𝑋 )
6 acsmap2d.6 ( 𝜑 → ( 𝑁𝑆 ) = ( 𝑁𝑇 ) )
7 1 acsmred ( 𝜑𝐴 ∈ ( Moore ‘ 𝑋 ) )
8 3 7 4 mrissd ( 𝜑𝑆𝑋 )
9 7 2 5 mrcssidd ( 𝜑𝑇 ⊆ ( 𝑁𝑇 ) )
10 9 6 sseqtrrd ( 𝜑𝑇 ⊆ ( 𝑁𝑆 ) )
11 1 2 8 10 acsmapd ( 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ran 𝑓 ) ) )
12 simprl ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ran 𝑓 ) ) ) → 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) )
13 7 adantr ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ran 𝑓 ) ) ) → 𝐴 ∈ ( Moore ‘ 𝑋 ) )
14 4 adantr ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ran 𝑓 ) ) ) → 𝑆𝐼 )
15 3 13 14 mrissd ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ran 𝑓 ) ) ) → 𝑆𝑋 )
16 13 2 15 mrcssidd ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ran 𝑓 ) ) ) → 𝑆 ⊆ ( 𝑁𝑆 ) )
17 6 adantr ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ran 𝑓 ) ) ) → ( 𝑁𝑆 ) = ( 𝑁𝑇 ) )
18 simprr ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ran 𝑓 ) ) ) → 𝑇 ⊆ ( 𝑁 ran 𝑓 ) )
19 13 2 mrcssvd ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ran 𝑓 ) ) ) → ( 𝑁 ran 𝑓 ) ⊆ 𝑋 )
20 13 2 18 19 mrcssd ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ran 𝑓 ) ) ) → ( 𝑁𝑇 ) ⊆ ( 𝑁 ‘ ( 𝑁 ran 𝑓 ) ) )
21 frn ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) → ran 𝑓 ⊆ ( 𝒫 𝑆 ∩ Fin ) )
22 21 unissd ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) → ran 𝑓 ( 𝒫 𝑆 ∩ Fin ) )
23 unifpw ( 𝒫 𝑆 ∩ Fin ) = 𝑆
24 22 23 sseqtrdi ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) → ran 𝑓𝑆 )
25 24 ad2antrl ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ran 𝑓 ) ) ) → ran 𝑓𝑆 )
26 25 15 sstrd ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ran 𝑓 ) ) ) → ran 𝑓𝑋 )
27 13 2 26 mrcidmd ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ran 𝑓 ) ) ) → ( 𝑁 ‘ ( 𝑁 ran 𝑓 ) ) = ( 𝑁 ran 𝑓 ) )
28 20 27 sseqtrd ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ran 𝑓 ) ) ) → ( 𝑁𝑇 ) ⊆ ( 𝑁 ran 𝑓 ) )
29 17 28 eqsstrd ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ran 𝑓 ) ) ) → ( 𝑁𝑆 ) ⊆ ( 𝑁 ran 𝑓 ) )
30 16 29 sstrd ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ran 𝑓 ) ) ) → 𝑆 ⊆ ( 𝑁 ran 𝑓 ) )
31 13 2 3 30 25 14 mrissmrcd ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ran 𝑓 ) ) ) → 𝑆 = ran 𝑓 )
32 12 31 jca ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ran 𝑓 ) ) ) → ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ran 𝑓 ) )
33 32 ex ( 𝜑 → ( ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ran 𝑓 ) ) → ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ran 𝑓 ) ) )
34 33 eximdv ( 𝜑 → ( ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑇 ⊆ ( 𝑁 ran 𝑓 ) ) → ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ran 𝑓 ) ) )
35 11 34 mpd ( 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ran 𝑓 ) )