Metamath Proof Explorer


Theorem acsinfd

Description: In an algebraic closure system, if S and T have the same closure and S is infinite independent, then T is infinite. This follows from applying unirnffid to the map given in acsmap2d . See Section II.5 in Cohn p. 81 to 82. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses acsmap2d.1 ( 𝜑𝐴 ∈ ( ACS ‘ 𝑋 ) )
acsmap2d.2 𝑁 = ( mrCls ‘ 𝐴 )
acsmap2d.3 𝐼 = ( mrInd ‘ 𝐴 )
acsmap2d.4 ( 𝜑𝑆𝐼 )
acsmap2d.5 ( 𝜑𝑇𝑋 )
acsmap2d.6 ( 𝜑 → ( 𝑁𝑆 ) = ( 𝑁𝑇 ) )
acsinfd.7 ( 𝜑 → ¬ 𝑆 ∈ Fin )
Assertion acsinfd ( 𝜑 → ¬ 𝑇 ∈ Fin )

Proof

Step Hyp Ref Expression
1 acsmap2d.1 ( 𝜑𝐴 ∈ ( ACS ‘ 𝑋 ) )
2 acsmap2d.2 𝑁 = ( mrCls ‘ 𝐴 )
3 acsmap2d.3 𝐼 = ( mrInd ‘ 𝐴 )
4 acsmap2d.4 ( 𝜑𝑆𝐼 )
5 acsmap2d.5 ( 𝜑𝑇𝑋 )
6 acsmap2d.6 ( 𝜑 → ( 𝑁𝑆 ) = ( 𝑁𝑇 ) )
7 acsinfd.7 ( 𝜑 → ¬ 𝑆 ∈ Fin )
8 1 2 3 4 5 6 acsmap2d ( 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ran 𝑓 ) )
9 simplrr ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ran 𝑓 ) ) ∧ 𝑇 ∈ Fin ) → 𝑆 = ran 𝑓 )
10 simplrl ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ran 𝑓 ) ) ∧ 𝑇 ∈ Fin ) → 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) )
11 inss2 ( 𝒫 𝑆 ∩ Fin ) ⊆ Fin
12 fss ( ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ( 𝒫 𝑆 ∩ Fin ) ⊆ Fin ) → 𝑓 : 𝑇 ⟶ Fin )
13 10 11 12 sylancl ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ran 𝑓 ) ) ∧ 𝑇 ∈ Fin ) → 𝑓 : 𝑇 ⟶ Fin )
14 simpr ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ran 𝑓 ) ) ∧ 𝑇 ∈ Fin ) → 𝑇 ∈ Fin )
15 13 14 unirnffid ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ran 𝑓 ) ) ∧ 𝑇 ∈ Fin ) → ran 𝑓 ∈ Fin )
16 9 15 eqeltrd ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ran 𝑓 ) ) ∧ 𝑇 ∈ Fin ) → 𝑆 ∈ Fin )
17 7 ad2antrr ( ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ran 𝑓 ) ) ∧ 𝑇 ∈ Fin ) → ¬ 𝑆 ∈ Fin )
18 16 17 pm2.65da ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ran 𝑓 ) ) → ¬ 𝑇 ∈ Fin )
19 8 18 exlimddv ( 𝜑 → ¬ 𝑇 ∈ Fin )