| Step |
Hyp |
Ref |
Expression |
| 1 |
|
acsmap2d.1 |
⊢ ( 𝜑 → 𝐴 ∈ ( ACS ‘ 𝑋 ) ) |
| 2 |
|
acsmap2d.2 |
⊢ 𝑁 = ( mrCls ‘ 𝐴 ) |
| 3 |
|
acsmap2d.3 |
⊢ 𝐼 = ( mrInd ‘ 𝐴 ) |
| 4 |
|
acsmap2d.4 |
⊢ ( 𝜑 → 𝑆 ∈ 𝐼 ) |
| 5 |
|
acsmap2d.5 |
⊢ ( 𝜑 → 𝑇 ⊆ 𝑋 ) |
| 6 |
|
acsmap2d.6 |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑆 ) = ( 𝑁 ‘ 𝑇 ) ) |
| 7 |
|
acsinfd.7 |
⊢ ( 𝜑 → ¬ 𝑆 ∈ Fin ) |
| 8 |
1 2 3 4 5 6
|
acsmap2d |
⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ∪ ran 𝑓 ) ) |
| 9 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ∪ ran 𝑓 ) ) → 𝑆 = ∪ ran 𝑓 ) |
| 10 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ∪ ran 𝑓 ) ) → 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ) |
| 11 |
|
inss2 |
⊢ ( 𝒫 𝑆 ∩ Fin ) ⊆ Fin |
| 12 |
|
fss |
⊢ ( ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ ( 𝒫 𝑆 ∩ Fin ) ⊆ Fin ) → 𝑓 : 𝑇 ⟶ Fin ) |
| 13 |
10 11 12
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ∪ ran 𝑓 ) ) → 𝑓 : 𝑇 ⟶ Fin ) |
| 14 |
1 2 3 4 5 6 7
|
acsinfd |
⊢ ( 𝜑 → ¬ 𝑇 ∈ Fin ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ∪ ran 𝑓 ) ) → ¬ 𝑇 ∈ Fin ) |
| 16 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ∪ ran 𝑓 ) ) → 𝐴 ∈ ( ACS ‘ 𝑋 ) ) |
| 17 |
16
|
elfvexd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ∪ ran 𝑓 ) ) → 𝑋 ∈ V ) |
| 18 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ∪ ran 𝑓 ) ) → 𝑇 ⊆ 𝑋 ) |
| 19 |
17 18
|
ssexd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ∪ ran 𝑓 ) ) → 𝑇 ∈ V ) |
| 20 |
13 15 19
|
unirnfdomd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ∪ ran 𝑓 ) ) → ∪ ran 𝑓 ≼ 𝑇 ) |
| 21 |
9 20
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : 𝑇 ⟶ ( 𝒫 𝑆 ∩ Fin ) ∧ 𝑆 = ∪ ran 𝑓 ) ) → 𝑆 ≼ 𝑇 ) |
| 22 |
8 21
|
exlimddv |
⊢ ( 𝜑 → 𝑆 ≼ 𝑇 ) |