Metamath Proof Explorer


Theorem unirnfdomd

Description: The union of the range of a function from an infinite set into the class of finite sets is dominated by its domain. Deduction form. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses unirnfdomd.1 ( 𝜑𝐹 : 𝑇 ⟶ Fin )
unirnfdomd.2 ( 𝜑 → ¬ 𝑇 ∈ Fin )
unirnfdomd.3 ( 𝜑𝑇𝑉 )
Assertion unirnfdomd ( 𝜑 ran 𝐹𝑇 )

Proof

Step Hyp Ref Expression
1 unirnfdomd.1 ( 𝜑𝐹 : 𝑇 ⟶ Fin )
2 unirnfdomd.2 ( 𝜑 → ¬ 𝑇 ∈ Fin )
3 unirnfdomd.3 ( 𝜑𝑇𝑉 )
4 1 ffnd ( 𝜑𝐹 Fn 𝑇 )
5 fnex ( ( 𝐹 Fn 𝑇𝑇𝑉 ) → 𝐹 ∈ V )
6 4 3 5 syl2anc ( 𝜑𝐹 ∈ V )
7 rnexg ( 𝐹 ∈ V → ran 𝐹 ∈ V )
8 6 7 syl ( 𝜑 → ran 𝐹 ∈ V )
9 frn ( 𝐹 : 𝑇 ⟶ Fin → ran 𝐹 ⊆ Fin )
10 dfss3 ( ran 𝐹 ⊆ Fin ↔ ∀ 𝑥 ∈ ran 𝐹 𝑥 ∈ Fin )
11 9 10 sylib ( 𝐹 : 𝑇 ⟶ Fin → ∀ 𝑥 ∈ ran 𝐹 𝑥 ∈ Fin )
12 fict ( 𝑥 ∈ Fin → 𝑥 ≼ ω )
13 12 ralimi ( ∀ 𝑥 ∈ ran 𝐹 𝑥 ∈ Fin → ∀ 𝑥 ∈ ran 𝐹 𝑥 ≼ ω )
14 1 11 13 3syl ( 𝜑 → ∀ 𝑥 ∈ ran 𝐹 𝑥 ≼ ω )
15 unidom ( ( ran 𝐹 ∈ V ∧ ∀ 𝑥 ∈ ran 𝐹 𝑥 ≼ ω ) → ran 𝐹 ≼ ( ran 𝐹 × ω ) )
16 8 14 15 syl2anc ( 𝜑 ran 𝐹 ≼ ( ran 𝐹 × ω ) )
17 fnrndomg ( 𝑇𝑉 → ( 𝐹 Fn 𝑇 → ran 𝐹𝑇 ) )
18 3 4 17 sylc ( 𝜑 → ran 𝐹𝑇 )
19 omex ω ∈ V
20 19 xpdom1 ( ran 𝐹𝑇 → ( ran 𝐹 × ω ) ≼ ( 𝑇 × ω ) )
21 18 20 syl ( 𝜑 → ( ran 𝐹 × ω ) ≼ ( 𝑇 × ω ) )
22 domtr ( ( ran 𝐹 ≼ ( ran 𝐹 × ω ) ∧ ( ran 𝐹 × ω ) ≼ ( 𝑇 × ω ) ) → ran 𝐹 ≼ ( 𝑇 × ω ) )
23 16 21 22 syl2anc ( 𝜑 ran 𝐹 ≼ ( 𝑇 × ω ) )
24 infinf ( 𝑇𝑉 → ( ¬ 𝑇 ∈ Fin ↔ ω ≼ 𝑇 ) )
25 3 24 syl ( 𝜑 → ( ¬ 𝑇 ∈ Fin ↔ ω ≼ 𝑇 ) )
26 2 25 mpbid ( 𝜑 → ω ≼ 𝑇 )
27 xpdom2g ( ( 𝑇𝑉 ∧ ω ≼ 𝑇 ) → ( 𝑇 × ω ) ≼ ( 𝑇 × 𝑇 ) )
28 3 26 27 syl2anc ( 𝜑 → ( 𝑇 × ω ) ≼ ( 𝑇 × 𝑇 ) )
29 domtr ( ( ran 𝐹 ≼ ( 𝑇 × ω ) ∧ ( 𝑇 × ω ) ≼ ( 𝑇 × 𝑇 ) ) → ran 𝐹 ≼ ( 𝑇 × 𝑇 ) )
30 23 28 29 syl2anc ( 𝜑 ran 𝐹 ≼ ( 𝑇 × 𝑇 ) )
31 infxpidm ( ω ≼ 𝑇 → ( 𝑇 × 𝑇 ) ≈ 𝑇 )
32 26 31 syl ( 𝜑 → ( 𝑇 × 𝑇 ) ≈ 𝑇 )
33 domentr ( ( ran 𝐹 ≼ ( 𝑇 × 𝑇 ) ∧ ( 𝑇 × 𝑇 ) ≈ 𝑇 ) → ran 𝐹𝑇 )
34 30 32 33 syl2anc ( 𝜑 ran 𝐹𝑇 )