Metamath Proof Explorer


Theorem konigthlem

Description: Lemma for konigth . (Contributed by Mario Carneiro, 22-Feb-2013)

Ref Expression
Hypotheses konigth.1 𝐴 ∈ V
konigth.2 𝑆 = 𝑖𝐴 ( 𝑀𝑖 )
konigth.3 𝑃 = X 𝑖𝐴 ( 𝑁𝑖 )
konigth.4 𝐷 = ( 𝑖𝐴 ↦ ( 𝑎 ∈ ( 𝑀𝑖 ) ↦ ( ( 𝑓𝑎 ) ‘ 𝑖 ) ) )
konigth.5 𝐸 = ( 𝑖𝐴 ↦ ( 𝑒𝑖 ) )
Assertion konigthlem ( ∀ 𝑖𝐴 ( 𝑀𝑖 ) ≺ ( 𝑁𝑖 ) → 𝑆𝑃 )

Proof

Step Hyp Ref Expression
1 konigth.1 𝐴 ∈ V
2 konigth.2 𝑆 = 𝑖𝐴 ( 𝑀𝑖 )
3 konigth.3 𝑃 = X 𝑖𝐴 ( 𝑁𝑖 )
4 konigth.4 𝐷 = ( 𝑖𝐴 ↦ ( 𝑎 ∈ ( 𝑀𝑖 ) ↦ ( ( 𝑓𝑎 ) ‘ 𝑖 ) ) )
5 konigth.5 𝐸 = ( 𝑖𝐴 ↦ ( 𝑒𝑖 ) )
6 fvex ( 𝑀𝑖 ) ∈ V
7 fvex ( ( 𝑓𝑎 ) ‘ 𝑖 ) ∈ V
8 eqid ( 𝑎 ∈ ( 𝑀𝑖 ) ↦ ( ( 𝑓𝑎 ) ‘ 𝑖 ) ) = ( 𝑎 ∈ ( 𝑀𝑖 ) ↦ ( ( 𝑓𝑎 ) ‘ 𝑖 ) )
9 7 8 fnmpti ( 𝑎 ∈ ( 𝑀𝑖 ) ↦ ( ( 𝑓𝑎 ) ‘ 𝑖 ) ) Fn ( 𝑀𝑖 )
10 6 mptex ( 𝑎 ∈ ( 𝑀𝑖 ) ↦ ( ( 𝑓𝑎 ) ‘ 𝑖 ) ) ∈ V
11 4 fvmpt2 ( ( 𝑖𝐴 ∧ ( 𝑎 ∈ ( 𝑀𝑖 ) ↦ ( ( 𝑓𝑎 ) ‘ 𝑖 ) ) ∈ V ) → ( 𝐷𝑖 ) = ( 𝑎 ∈ ( 𝑀𝑖 ) ↦ ( ( 𝑓𝑎 ) ‘ 𝑖 ) ) )
12 10 11 mpan2 ( 𝑖𝐴 → ( 𝐷𝑖 ) = ( 𝑎 ∈ ( 𝑀𝑖 ) ↦ ( ( 𝑓𝑎 ) ‘ 𝑖 ) ) )
13 12 fneq1d ( 𝑖𝐴 → ( ( 𝐷𝑖 ) Fn ( 𝑀𝑖 ) ↔ ( 𝑎 ∈ ( 𝑀𝑖 ) ↦ ( ( 𝑓𝑎 ) ‘ 𝑖 ) ) Fn ( 𝑀𝑖 ) ) )
14 9 13 mpbiri ( 𝑖𝐴 → ( 𝐷𝑖 ) Fn ( 𝑀𝑖 ) )
15 fnrndomg ( ( 𝑀𝑖 ) ∈ V → ( ( 𝐷𝑖 ) Fn ( 𝑀𝑖 ) → ran ( 𝐷𝑖 ) ≼ ( 𝑀𝑖 ) ) )
16 6 14 15 mpsyl ( 𝑖𝐴 → ran ( 𝐷𝑖 ) ≼ ( 𝑀𝑖 ) )
17 domsdomtr ( ( ran ( 𝐷𝑖 ) ≼ ( 𝑀𝑖 ) ∧ ( 𝑀𝑖 ) ≺ ( 𝑁𝑖 ) ) → ran ( 𝐷𝑖 ) ≺ ( 𝑁𝑖 ) )
18 16 17 sylan ( ( 𝑖𝐴 ∧ ( 𝑀𝑖 ) ≺ ( 𝑁𝑖 ) ) → ran ( 𝐷𝑖 ) ≺ ( 𝑁𝑖 ) )
19 sdomdif ( ran ( 𝐷𝑖 ) ≺ ( 𝑁𝑖 ) → ( ( 𝑁𝑖 ) ∖ ran ( 𝐷𝑖 ) ) ≠ ∅ )
20 18 19 syl ( ( 𝑖𝐴 ∧ ( 𝑀𝑖 ) ≺ ( 𝑁𝑖 ) ) → ( ( 𝑁𝑖 ) ∖ ran ( 𝐷𝑖 ) ) ≠ ∅ )
21 20 ralimiaa ( ∀ 𝑖𝐴 ( 𝑀𝑖 ) ≺ ( 𝑁𝑖 ) → ∀ 𝑖𝐴 ( ( 𝑁𝑖 ) ∖ ran ( 𝐷𝑖 ) ) ≠ ∅ )
22 fvex ( 𝑁𝑖 ) ∈ V
23 22 difexi ( ( 𝑁𝑖 ) ∖ ran ( 𝐷𝑖 ) ) ∈ V
24 1 23 ac6c5 ( ∀ 𝑖𝐴 ( ( 𝑁𝑖 ) ∖ ran ( 𝐷𝑖 ) ) ≠ ∅ → ∃ 𝑒𝑖𝐴 ( 𝑒𝑖 ) ∈ ( ( 𝑁𝑖 ) ∖ ran ( 𝐷𝑖 ) ) )
25 equid 𝑓 = 𝑓
26 eldifi ( ( 𝑒𝑖 ) ∈ ( ( 𝑁𝑖 ) ∖ ran ( 𝐷𝑖 ) ) → ( 𝑒𝑖 ) ∈ ( 𝑁𝑖 ) )
27 fvex ( 𝑒𝑖 ) ∈ V
28 5 fvmpt2 ( ( 𝑖𝐴 ∧ ( 𝑒𝑖 ) ∈ V ) → ( 𝐸𝑖 ) = ( 𝑒𝑖 ) )
29 27 28 mpan2 ( 𝑖𝐴 → ( 𝐸𝑖 ) = ( 𝑒𝑖 ) )
30 29 eleq1d ( 𝑖𝐴 → ( ( 𝐸𝑖 ) ∈ ( 𝑁𝑖 ) ↔ ( 𝑒𝑖 ) ∈ ( 𝑁𝑖 ) ) )
31 26 30 syl5ibr ( 𝑖𝐴 → ( ( 𝑒𝑖 ) ∈ ( ( 𝑁𝑖 ) ∖ ran ( 𝐷𝑖 ) ) → ( 𝐸𝑖 ) ∈ ( 𝑁𝑖 ) ) )
32 31 ralimia ( ∀ 𝑖𝐴 ( 𝑒𝑖 ) ∈ ( ( 𝑁𝑖 ) ∖ ran ( 𝐷𝑖 ) ) → ∀ 𝑖𝐴 ( 𝐸𝑖 ) ∈ ( 𝑁𝑖 ) )
33 27 5 fnmpti 𝐸 Fn 𝐴
34 32 33 jctil ( ∀ 𝑖𝐴 ( 𝑒𝑖 ) ∈ ( ( 𝑁𝑖 ) ∖ ran ( 𝐷𝑖 ) ) → ( 𝐸 Fn 𝐴 ∧ ∀ 𝑖𝐴 ( 𝐸𝑖 ) ∈ ( 𝑁𝑖 ) ) )
35 1 mptex ( 𝑖𝐴 ↦ ( 𝑒𝑖 ) ) ∈ V
36 5 35 eqeltri 𝐸 ∈ V
37 36 elixp ( 𝐸X 𝑖𝐴 ( 𝑁𝑖 ) ↔ ( 𝐸 Fn 𝐴 ∧ ∀ 𝑖𝐴 ( 𝐸𝑖 ) ∈ ( 𝑁𝑖 ) ) )
38 34 37 sylibr ( ∀ 𝑖𝐴 ( 𝑒𝑖 ) ∈ ( ( 𝑁𝑖 ) ∖ ran ( 𝐷𝑖 ) ) → 𝐸X 𝑖𝐴 ( 𝑁𝑖 ) )
39 38 3 eleqtrrdi ( ∀ 𝑖𝐴 ( 𝑒𝑖 ) ∈ ( ( 𝑁𝑖 ) ∖ ran ( 𝐷𝑖 ) ) → 𝐸𝑃 )
40 foelrn ( ( 𝑓 : 𝑆onto𝑃𝐸𝑃 ) → ∃ 𝑎𝑆 𝐸 = ( 𝑓𝑎 ) )
41 40 expcom ( 𝐸𝑃 → ( 𝑓 : 𝑆onto𝑃 → ∃ 𝑎𝑆 𝐸 = ( 𝑓𝑎 ) ) )
42 2 eleq2i ( 𝑎𝑆𝑎 𝑖𝐴 ( 𝑀𝑖 ) )
43 eliun ( 𝑎 𝑖𝐴 ( 𝑀𝑖 ) ↔ ∃ 𝑖𝐴 𝑎 ∈ ( 𝑀𝑖 ) )
44 42 43 bitri ( 𝑎𝑆 ↔ ∃ 𝑖𝐴 𝑎 ∈ ( 𝑀𝑖 ) )
45 nfra1 𝑖𝑖𝐴 ( 𝑒𝑖 ) ∈ ( ( 𝑁𝑖 ) ∖ ran ( 𝐷𝑖 ) )
46 nfv 𝑖 𝐸 = ( 𝑓𝑎 )
47 45 46 nfan 𝑖 ( ∀ 𝑖𝐴 ( 𝑒𝑖 ) ∈ ( ( 𝑁𝑖 ) ∖ ran ( 𝐷𝑖 ) ) ∧ 𝐸 = ( 𝑓𝑎 ) )
48 nfv 𝑖 ¬ 𝑓 = 𝑓
49 29 ad2antrl ( ( 𝐸 = ( 𝑓𝑎 ) ∧ ( 𝑖𝐴𝑎 ∈ ( 𝑀𝑖 ) ) ) → ( 𝐸𝑖 ) = ( 𝑒𝑖 ) )
50 fveq1 ( 𝐸 = ( 𝑓𝑎 ) → ( 𝐸𝑖 ) = ( ( 𝑓𝑎 ) ‘ 𝑖 ) )
51 12 fveq1d ( 𝑖𝐴 → ( ( 𝐷𝑖 ) ‘ 𝑎 ) = ( ( 𝑎 ∈ ( 𝑀𝑖 ) ↦ ( ( 𝑓𝑎 ) ‘ 𝑖 ) ) ‘ 𝑎 ) )
52 8 fvmpt2 ( ( 𝑎 ∈ ( 𝑀𝑖 ) ∧ ( ( 𝑓𝑎 ) ‘ 𝑖 ) ∈ V ) → ( ( 𝑎 ∈ ( 𝑀𝑖 ) ↦ ( ( 𝑓𝑎 ) ‘ 𝑖 ) ) ‘ 𝑎 ) = ( ( 𝑓𝑎 ) ‘ 𝑖 ) )
53 7 52 mpan2 ( 𝑎 ∈ ( 𝑀𝑖 ) → ( ( 𝑎 ∈ ( 𝑀𝑖 ) ↦ ( ( 𝑓𝑎 ) ‘ 𝑖 ) ) ‘ 𝑎 ) = ( ( 𝑓𝑎 ) ‘ 𝑖 ) )
54 51 53 sylan9eq ( ( 𝑖𝐴𝑎 ∈ ( 𝑀𝑖 ) ) → ( ( 𝐷𝑖 ) ‘ 𝑎 ) = ( ( 𝑓𝑎 ) ‘ 𝑖 ) )
55 54 eqcomd ( ( 𝑖𝐴𝑎 ∈ ( 𝑀𝑖 ) ) → ( ( 𝑓𝑎 ) ‘ 𝑖 ) = ( ( 𝐷𝑖 ) ‘ 𝑎 ) )
56 50 55 sylan9eq ( ( 𝐸 = ( 𝑓𝑎 ) ∧ ( 𝑖𝐴𝑎 ∈ ( 𝑀𝑖 ) ) ) → ( 𝐸𝑖 ) = ( ( 𝐷𝑖 ) ‘ 𝑎 ) )
57 49 56 eqtr3d ( ( 𝐸 = ( 𝑓𝑎 ) ∧ ( 𝑖𝐴𝑎 ∈ ( 𝑀𝑖 ) ) ) → ( 𝑒𝑖 ) = ( ( 𝐷𝑖 ) ‘ 𝑎 ) )
58 fnfvelrn ( ( ( 𝐷𝑖 ) Fn ( 𝑀𝑖 ) ∧ 𝑎 ∈ ( 𝑀𝑖 ) ) → ( ( 𝐷𝑖 ) ‘ 𝑎 ) ∈ ran ( 𝐷𝑖 ) )
59 14 58 sylan ( ( 𝑖𝐴𝑎 ∈ ( 𝑀𝑖 ) ) → ( ( 𝐷𝑖 ) ‘ 𝑎 ) ∈ ran ( 𝐷𝑖 ) )
60 59 adantl ( ( 𝐸 = ( 𝑓𝑎 ) ∧ ( 𝑖𝐴𝑎 ∈ ( 𝑀𝑖 ) ) ) → ( ( 𝐷𝑖 ) ‘ 𝑎 ) ∈ ran ( 𝐷𝑖 ) )
61 57 60 eqeltrd ( ( 𝐸 = ( 𝑓𝑎 ) ∧ ( 𝑖𝐴𝑎 ∈ ( 𝑀𝑖 ) ) ) → ( 𝑒𝑖 ) ∈ ran ( 𝐷𝑖 ) )
62 61 3adant1 ( ( ∀ 𝑖𝐴 ( 𝑒𝑖 ) ∈ ( ( 𝑁𝑖 ) ∖ ran ( 𝐷𝑖 ) ) ∧ 𝐸 = ( 𝑓𝑎 ) ∧ ( 𝑖𝐴𝑎 ∈ ( 𝑀𝑖 ) ) ) → ( 𝑒𝑖 ) ∈ ran ( 𝐷𝑖 ) )
63 simp1 ( ( ∀ 𝑖𝐴 ( 𝑒𝑖 ) ∈ ( ( 𝑁𝑖 ) ∖ ran ( 𝐷𝑖 ) ) ∧ 𝐸 = ( 𝑓𝑎 ) ∧ ( 𝑖𝐴𝑎 ∈ ( 𝑀𝑖 ) ) ) → ∀ 𝑖𝐴 ( 𝑒𝑖 ) ∈ ( ( 𝑁𝑖 ) ∖ ran ( 𝐷𝑖 ) ) )
64 simp3l ( ( ∀ 𝑖𝐴 ( 𝑒𝑖 ) ∈ ( ( 𝑁𝑖 ) ∖ ran ( 𝐷𝑖 ) ) ∧ 𝐸 = ( 𝑓𝑎 ) ∧ ( 𝑖𝐴𝑎 ∈ ( 𝑀𝑖 ) ) ) → 𝑖𝐴 )
65 rsp ( ∀ 𝑖𝐴 ( 𝑒𝑖 ) ∈ ( ( 𝑁𝑖 ) ∖ ran ( 𝐷𝑖 ) ) → ( 𝑖𝐴 → ( 𝑒𝑖 ) ∈ ( ( 𝑁𝑖 ) ∖ ran ( 𝐷𝑖 ) ) ) )
66 eldifn ( ( 𝑒𝑖 ) ∈ ( ( 𝑁𝑖 ) ∖ ran ( 𝐷𝑖 ) ) → ¬ ( 𝑒𝑖 ) ∈ ran ( 𝐷𝑖 ) )
67 65 66 syl6 ( ∀ 𝑖𝐴 ( 𝑒𝑖 ) ∈ ( ( 𝑁𝑖 ) ∖ ran ( 𝐷𝑖 ) ) → ( 𝑖𝐴 → ¬ ( 𝑒𝑖 ) ∈ ran ( 𝐷𝑖 ) ) )
68 63 64 67 sylc ( ( ∀ 𝑖𝐴 ( 𝑒𝑖 ) ∈ ( ( 𝑁𝑖 ) ∖ ran ( 𝐷𝑖 ) ) ∧ 𝐸 = ( 𝑓𝑎 ) ∧ ( 𝑖𝐴𝑎 ∈ ( 𝑀𝑖 ) ) ) → ¬ ( 𝑒𝑖 ) ∈ ran ( 𝐷𝑖 ) )
69 62 68 pm2.21dd ( ( ∀ 𝑖𝐴 ( 𝑒𝑖 ) ∈ ( ( 𝑁𝑖 ) ∖ ran ( 𝐷𝑖 ) ) ∧ 𝐸 = ( 𝑓𝑎 ) ∧ ( 𝑖𝐴𝑎 ∈ ( 𝑀𝑖 ) ) ) → ¬ 𝑓 = 𝑓 )
70 69 3expia ( ( ∀ 𝑖𝐴 ( 𝑒𝑖 ) ∈ ( ( 𝑁𝑖 ) ∖ ran ( 𝐷𝑖 ) ) ∧ 𝐸 = ( 𝑓𝑎 ) ) → ( ( 𝑖𝐴𝑎 ∈ ( 𝑀𝑖 ) ) → ¬ 𝑓 = 𝑓 ) )
71 70 expd ( ( ∀ 𝑖𝐴 ( 𝑒𝑖 ) ∈ ( ( 𝑁𝑖 ) ∖ ran ( 𝐷𝑖 ) ) ∧ 𝐸 = ( 𝑓𝑎 ) ) → ( 𝑖𝐴 → ( 𝑎 ∈ ( 𝑀𝑖 ) → ¬ 𝑓 = 𝑓 ) ) )
72 47 48 71 rexlimd ( ( ∀ 𝑖𝐴 ( 𝑒𝑖 ) ∈ ( ( 𝑁𝑖 ) ∖ ran ( 𝐷𝑖 ) ) ∧ 𝐸 = ( 𝑓𝑎 ) ) → ( ∃ 𝑖𝐴 𝑎 ∈ ( 𝑀𝑖 ) → ¬ 𝑓 = 𝑓 ) )
73 44 72 syl5bi ( ( ∀ 𝑖𝐴 ( 𝑒𝑖 ) ∈ ( ( 𝑁𝑖 ) ∖ ran ( 𝐷𝑖 ) ) ∧ 𝐸 = ( 𝑓𝑎 ) ) → ( 𝑎𝑆 → ¬ 𝑓 = 𝑓 ) )
74 73 ex ( ∀ 𝑖𝐴 ( 𝑒𝑖 ) ∈ ( ( 𝑁𝑖 ) ∖ ran ( 𝐷𝑖 ) ) → ( 𝐸 = ( 𝑓𝑎 ) → ( 𝑎𝑆 → ¬ 𝑓 = 𝑓 ) ) )
75 74 com23 ( ∀ 𝑖𝐴 ( 𝑒𝑖 ) ∈ ( ( 𝑁𝑖 ) ∖ ran ( 𝐷𝑖 ) ) → ( 𝑎𝑆 → ( 𝐸 = ( 𝑓𝑎 ) → ¬ 𝑓 = 𝑓 ) ) )
76 75 rexlimdv ( ∀ 𝑖𝐴 ( 𝑒𝑖 ) ∈ ( ( 𝑁𝑖 ) ∖ ran ( 𝐷𝑖 ) ) → ( ∃ 𝑎𝑆 𝐸 = ( 𝑓𝑎 ) → ¬ 𝑓 = 𝑓 ) )
77 41 76 syl9r ( ∀ 𝑖𝐴 ( 𝑒𝑖 ) ∈ ( ( 𝑁𝑖 ) ∖ ran ( 𝐷𝑖 ) ) → ( 𝐸𝑃 → ( 𝑓 : 𝑆onto𝑃 → ¬ 𝑓 = 𝑓 ) ) )
78 39 77 mpd ( ∀ 𝑖𝐴 ( 𝑒𝑖 ) ∈ ( ( 𝑁𝑖 ) ∖ ran ( 𝐷𝑖 ) ) → ( 𝑓 : 𝑆onto𝑃 → ¬ 𝑓 = 𝑓 ) )
79 25 78 mt2i ( ∀ 𝑖𝐴 ( 𝑒𝑖 ) ∈ ( ( 𝑁𝑖 ) ∖ ran ( 𝐷𝑖 ) ) → ¬ 𝑓 : 𝑆onto𝑃 )
80 79 exlimiv ( ∃ 𝑒𝑖𝐴 ( 𝑒𝑖 ) ∈ ( ( 𝑁𝑖 ) ∖ ran ( 𝐷𝑖 ) ) → ¬ 𝑓 : 𝑆onto𝑃 )
81 21 24 80 3syl ( ∀ 𝑖𝐴 ( 𝑀𝑖 ) ≺ ( 𝑁𝑖 ) → ¬ 𝑓 : 𝑆onto𝑃 )
82 81 nexdv ( ∀ 𝑖𝐴 ( 𝑀𝑖 ) ≺ ( 𝑁𝑖 ) → ¬ ∃ 𝑓 𝑓 : 𝑆onto𝑃 )
83 6 0dom ∅ ≼ ( 𝑀𝑖 )
84 domsdomtr ( ( ∅ ≼ ( 𝑀𝑖 ) ∧ ( 𝑀𝑖 ) ≺ ( 𝑁𝑖 ) ) → ∅ ≺ ( 𝑁𝑖 ) )
85 83 84 mpan ( ( 𝑀𝑖 ) ≺ ( 𝑁𝑖 ) → ∅ ≺ ( 𝑁𝑖 ) )
86 22 0sdom ( ∅ ≺ ( 𝑁𝑖 ) ↔ ( 𝑁𝑖 ) ≠ ∅ )
87 85 86 sylib ( ( 𝑀𝑖 ) ≺ ( 𝑁𝑖 ) → ( 𝑁𝑖 ) ≠ ∅ )
88 87 ralimi ( ∀ 𝑖𝐴 ( 𝑀𝑖 ) ≺ ( 𝑁𝑖 ) → ∀ 𝑖𝐴 ( 𝑁𝑖 ) ≠ ∅ )
89 3 neeq1i ( 𝑃 ≠ ∅ ↔ X 𝑖𝐴 ( 𝑁𝑖 ) ≠ ∅ )
90 22 rgenw 𝑖𝐴 ( 𝑁𝑖 ) ∈ V
91 ixpexg ( ∀ 𝑖𝐴 ( 𝑁𝑖 ) ∈ V → X 𝑖𝐴 ( 𝑁𝑖 ) ∈ V )
92 90 91 ax-mp X 𝑖𝐴 ( 𝑁𝑖 ) ∈ V
93 3 92 eqeltri 𝑃 ∈ V
94 93 0sdom ( ∅ ≺ 𝑃𝑃 ≠ ∅ )
95 1 22 ac9 ( ∀ 𝑖𝐴 ( 𝑁𝑖 ) ≠ ∅ ↔ X 𝑖𝐴 ( 𝑁𝑖 ) ≠ ∅ )
96 89 94 95 3bitr4i ( ∅ ≺ 𝑃 ↔ ∀ 𝑖𝐴 ( 𝑁𝑖 ) ≠ ∅ )
97 88 96 sylibr ( ∀ 𝑖𝐴 ( 𝑀𝑖 ) ≺ ( 𝑁𝑖 ) → ∅ ≺ 𝑃 )
98 1 6 iunex 𝑖𝐴 ( 𝑀𝑖 ) ∈ V
99 2 98 eqeltri 𝑆 ∈ V
100 domtri ( ( 𝑃 ∈ V ∧ 𝑆 ∈ V ) → ( 𝑃𝑆 ↔ ¬ 𝑆𝑃 ) )
101 93 99 100 mp2an ( 𝑃𝑆 ↔ ¬ 𝑆𝑃 )
102 101 biimpri ( ¬ 𝑆𝑃𝑃𝑆 )
103 fodomr ( ( ∅ ≺ 𝑃𝑃𝑆 ) → ∃ 𝑓 𝑓 : 𝑆onto𝑃 )
104 97 102 103 syl2an ( ( ∀ 𝑖𝐴 ( 𝑀𝑖 ) ≺ ( 𝑁𝑖 ) ∧ ¬ 𝑆𝑃 ) → ∃ 𝑓 𝑓 : 𝑆onto𝑃 )
105 82 104 mtand ( ∀ 𝑖𝐴 ( 𝑀𝑖 ) ≺ ( 𝑁𝑖 ) → ¬ ¬ 𝑆𝑃 )
106 105 notnotrd ( ∀ 𝑖𝐴 ( 𝑀𝑖 ) ≺ ( 𝑁𝑖 ) → 𝑆𝑃 )