| Step |
Hyp |
Ref |
Expression |
| 1 |
|
acsmap2d.1 |
|- ( ph -> A e. ( ACS ` X ) ) |
| 2 |
|
acsmap2d.2 |
|- N = ( mrCls ` A ) |
| 3 |
|
acsmap2d.3 |
|- I = ( mrInd ` A ) |
| 4 |
|
acsmap2d.4 |
|- ( ph -> S e. I ) |
| 5 |
|
acsmap2d.5 |
|- ( ph -> T C_ X ) |
| 6 |
|
acsmap2d.6 |
|- ( ph -> ( N ` S ) = ( N ` T ) ) |
| 7 |
|
acsinfd.7 |
|- ( ph -> -. S e. Fin ) |
| 8 |
1 2 3 4 5 6
|
acsmap2d |
|- ( ph -> E. f ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) |
| 9 |
|
simprr |
|- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) -> S = U. ran f ) |
| 10 |
|
simprl |
|- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) -> f : T --> ( ~P S i^i Fin ) ) |
| 11 |
|
inss2 |
|- ( ~P S i^i Fin ) C_ Fin |
| 12 |
|
fss |
|- ( ( f : T --> ( ~P S i^i Fin ) /\ ( ~P S i^i Fin ) C_ Fin ) -> f : T --> Fin ) |
| 13 |
10 11 12
|
sylancl |
|- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) -> f : T --> Fin ) |
| 14 |
1 2 3 4 5 6 7
|
acsinfd |
|- ( ph -> -. T e. Fin ) |
| 15 |
14
|
adantr |
|- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) -> -. T e. Fin ) |
| 16 |
1
|
adantr |
|- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) -> A e. ( ACS ` X ) ) |
| 17 |
16
|
elfvexd |
|- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) -> X e. _V ) |
| 18 |
5
|
adantr |
|- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) -> T C_ X ) |
| 19 |
17 18
|
ssexd |
|- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) -> T e. _V ) |
| 20 |
13 15 19
|
unirnfdomd |
|- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) -> U. ran f ~<_ T ) |
| 21 |
9 20
|
eqbrtrd |
|- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) -> S ~<_ T ) |
| 22 |
8 21
|
exlimddv |
|- ( ph -> S ~<_ T ) |