| Step |
Hyp |
Ref |
Expression |
| 1 |
|
acsmap2d.1 |
|- ( ph -> A e. ( ACS ` X ) ) |
| 2 |
|
acsmap2d.2 |
|- N = ( mrCls ` A ) |
| 3 |
|
acsmap2d.3 |
|- I = ( mrInd ` A ) |
| 4 |
|
acsmap2d.4 |
|- ( ph -> S e. I ) |
| 5 |
|
acsmap2d.5 |
|- ( ph -> T C_ X ) |
| 6 |
|
acsmap2d.6 |
|- ( ph -> ( N ` S ) = ( N ` T ) ) |
| 7 |
1
|
acsmred |
|- ( ph -> A e. ( Moore ` X ) ) |
| 8 |
3 7 4
|
mrissd |
|- ( ph -> S C_ X ) |
| 9 |
7 2 5
|
mrcssidd |
|- ( ph -> T C_ ( N ` T ) ) |
| 10 |
9 6
|
sseqtrrd |
|- ( ph -> T C_ ( N ` S ) ) |
| 11 |
1 2 8 10
|
acsmapd |
|- ( ph -> E. f ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) |
| 12 |
|
simprl |
|- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> f : T --> ( ~P S i^i Fin ) ) |
| 13 |
7
|
adantr |
|- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> A e. ( Moore ` X ) ) |
| 14 |
4
|
adantr |
|- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> S e. I ) |
| 15 |
3 13 14
|
mrissd |
|- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> S C_ X ) |
| 16 |
13 2 15
|
mrcssidd |
|- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> S C_ ( N ` S ) ) |
| 17 |
6
|
adantr |
|- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> ( N ` S ) = ( N ` T ) ) |
| 18 |
|
simprr |
|- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> T C_ ( N ` U. ran f ) ) |
| 19 |
13 2
|
mrcssvd |
|- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> ( N ` U. ran f ) C_ X ) |
| 20 |
13 2 18 19
|
mrcssd |
|- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> ( N ` T ) C_ ( N ` ( N ` U. ran f ) ) ) |
| 21 |
|
frn |
|- ( f : T --> ( ~P S i^i Fin ) -> ran f C_ ( ~P S i^i Fin ) ) |
| 22 |
21
|
unissd |
|- ( f : T --> ( ~P S i^i Fin ) -> U. ran f C_ U. ( ~P S i^i Fin ) ) |
| 23 |
|
unifpw |
|- U. ( ~P S i^i Fin ) = S |
| 24 |
22 23
|
sseqtrdi |
|- ( f : T --> ( ~P S i^i Fin ) -> U. ran f C_ S ) |
| 25 |
24
|
ad2antrl |
|- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> U. ran f C_ S ) |
| 26 |
25 15
|
sstrd |
|- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> U. ran f C_ X ) |
| 27 |
13 2 26
|
mrcidmd |
|- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> ( N ` ( N ` U. ran f ) ) = ( N ` U. ran f ) ) |
| 28 |
20 27
|
sseqtrd |
|- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> ( N ` T ) C_ ( N ` U. ran f ) ) |
| 29 |
17 28
|
eqsstrd |
|- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> ( N ` S ) C_ ( N ` U. ran f ) ) |
| 30 |
16 29
|
sstrd |
|- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> S C_ ( N ` U. ran f ) ) |
| 31 |
13 2 3 30 25 14
|
mrissmrcd |
|- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> S = U. ran f ) |
| 32 |
12 31
|
jca |
|- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) ) -> ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) |
| 33 |
32
|
ex |
|- ( ph -> ( ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) -> ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) ) |
| 34 |
33
|
eximdv |
|- ( ph -> ( E. f ( f : T --> ( ~P S i^i Fin ) /\ T C_ ( N ` U. ran f ) ) -> E. f ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) ) |
| 35 |
11 34
|
mpd |
|- ( ph -> E. f ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) |