Description: Moore closure is idempotent. Deduction form of mrcidm . (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mrcssidd.1 | |- ( ph -> A e. ( Moore ` X ) ) |
|
| mrcssidd.2 | |- N = ( mrCls ` A ) |
||
| mrcssidd.3 | |- ( ph -> U C_ X ) |
||
| Assertion | mrcidmd | |- ( ph -> ( N ` ( N ` U ) ) = ( N ` U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrcssidd.1 | |- ( ph -> A e. ( Moore ` X ) ) |
|
| 2 | mrcssidd.2 | |- N = ( mrCls ` A ) |
|
| 3 | mrcssidd.3 | |- ( ph -> U C_ X ) |
|
| 4 | 2 | mrcidm | |- ( ( A e. ( Moore ` X ) /\ U C_ X ) -> ( N ` ( N ` U ) ) = ( N ` U ) ) |
| 5 | 1 3 4 | syl2anc | |- ( ph -> ( N ` ( N ` U ) ) = ( N ` U ) ) |