| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mressmrcd.1 |
|- ( ph -> A e. ( Moore ` X ) ) |
| 2 |
|
mressmrcd.2 |
|- N = ( mrCls ` A ) |
| 3 |
|
mressmrcd.3 |
|- ( ph -> S C_ ( N ` T ) ) |
| 4 |
|
mressmrcd.4 |
|- ( ph -> T C_ S ) |
| 5 |
1 2
|
mrcssvd |
|- ( ph -> ( N ` T ) C_ X ) |
| 6 |
1 2 3 5
|
mrcssd |
|- ( ph -> ( N ` S ) C_ ( N ` ( N ` T ) ) ) |
| 7 |
3 5
|
sstrd |
|- ( ph -> S C_ X ) |
| 8 |
4 7
|
sstrd |
|- ( ph -> T C_ X ) |
| 9 |
1 2 8
|
mrcidmd |
|- ( ph -> ( N ` ( N ` T ) ) = ( N ` T ) ) |
| 10 |
6 9
|
sseqtrd |
|- ( ph -> ( N ` S ) C_ ( N ` T ) ) |
| 11 |
1 2 4 7
|
mrcssd |
|- ( ph -> ( N ` T ) C_ ( N ` S ) ) |
| 12 |
10 11
|
eqssd |
|- ( ph -> ( N ` S ) = ( N ` T ) ) |