| Step |
Hyp |
Ref |
Expression |
| 1 |
|
acsmap2d.1 |
|- ( ph -> A e. ( ACS ` X ) ) |
| 2 |
|
acsmap2d.2 |
|- N = ( mrCls ` A ) |
| 3 |
|
acsmap2d.3 |
|- I = ( mrInd ` A ) |
| 4 |
|
acsmap2d.4 |
|- ( ph -> S e. I ) |
| 5 |
|
acsmap2d.5 |
|- ( ph -> T C_ X ) |
| 6 |
|
acsmap2d.6 |
|- ( ph -> ( N ` S ) = ( N ` T ) ) |
| 7 |
|
acsinfd.7 |
|- ( ph -> -. S e. Fin ) |
| 8 |
1 2 3 4 5 6
|
acsmap2d |
|- ( ph -> E. f ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) |
| 9 |
|
simplrr |
|- ( ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) /\ T e. Fin ) -> S = U. ran f ) |
| 10 |
|
simplrl |
|- ( ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) /\ T e. Fin ) -> f : T --> ( ~P S i^i Fin ) ) |
| 11 |
|
inss2 |
|- ( ~P S i^i Fin ) C_ Fin |
| 12 |
|
fss |
|- ( ( f : T --> ( ~P S i^i Fin ) /\ ( ~P S i^i Fin ) C_ Fin ) -> f : T --> Fin ) |
| 13 |
10 11 12
|
sylancl |
|- ( ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) /\ T e. Fin ) -> f : T --> Fin ) |
| 14 |
|
simpr |
|- ( ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) /\ T e. Fin ) -> T e. Fin ) |
| 15 |
13 14
|
unirnffid |
|- ( ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) /\ T e. Fin ) -> U. ran f e. Fin ) |
| 16 |
9 15
|
eqeltrd |
|- ( ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) /\ T e. Fin ) -> S e. Fin ) |
| 17 |
7
|
ad2antrr |
|- ( ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) /\ T e. Fin ) -> -. S e. Fin ) |
| 18 |
16 17
|
pm2.65da |
|- ( ( ph /\ ( f : T --> ( ~P S i^i Fin ) /\ S = U. ran f ) ) -> -. T e. Fin ) |
| 19 |
8 18
|
exlimddv |
|- ( ph -> -. T e. Fin ) |