Metamath Proof Explorer


Theorem ismri2dad

Description: Consequence of a set in a Moore system being independent. Deduction form. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses ismri2dad.1 N=mrClsA
ismri2dad.2 I=mrIndA
ismri2dad.3 φAMooreX
ismri2dad.4 φSI
ismri2dad.5 φYS
Assertion ismri2dad φ¬YNSY

Proof

Step Hyp Ref Expression
1 ismri2dad.1 N=mrClsA
2 ismri2dad.2 I=mrIndA
3 ismri2dad.3 φAMooreX
4 ismri2dad.4 φSI
5 ismri2dad.5 φYS
6 2 3 4 mrissd φSX
7 1 2 3 6 ismri2d φSIxS¬xNSx
8 4 7 mpbid φxS¬xNSx
9 simpr φx=Yx=Y
10 9 sneqd φx=Yx=Y
11 10 difeq2d φx=YSx=SY
12 11 fveq2d φx=YNSx=NSY
13 9 12 eleq12d φx=YxNSxYNSY
14 13 notbid φx=Y¬xNSx¬YNSY
15 5 14 rspcdv φxS¬xNSx¬YNSY
16 8 15 mpd φ¬YNSY