| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ismri2dad.1 |
⊢ 𝑁 = ( mrCls ‘ 𝐴 ) |
| 2 |
|
ismri2dad.2 |
⊢ 𝐼 = ( mrInd ‘ 𝐴 ) |
| 3 |
|
ismri2dad.3 |
⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
| 4 |
|
ismri2dad.4 |
⊢ ( 𝜑 → 𝑆 ∈ 𝐼 ) |
| 5 |
|
ismri2dad.5 |
⊢ ( 𝜑 → 𝑌 ∈ 𝑆 ) |
| 6 |
2 3 4
|
mrissd |
⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) |
| 7 |
1 2 3 6
|
ismri2d |
⊢ ( 𝜑 → ( 𝑆 ∈ 𝐼 ↔ ∀ 𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ) |
| 8 |
4 7
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) |
| 9 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑌 ) → 𝑥 = 𝑌 ) |
| 10 |
9
|
sneqd |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑌 ) → { 𝑥 } = { 𝑌 } ) |
| 11 |
10
|
difeq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑌 ) → ( 𝑆 ∖ { 𝑥 } ) = ( 𝑆 ∖ { 𝑌 } ) ) |
| 12 |
11
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑌 ) → ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) = ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) |
| 13 |
9 12
|
eleq12d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑌 ) → ( 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ↔ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) ) |
| 14 |
13
|
notbid |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑌 ) → ( ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ↔ ¬ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) ) |
| 15 |
5 14
|
rspcdv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) → ¬ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) ) |
| 16 |
8 15
|
mpd |
⊢ ( 𝜑 → ¬ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) |