Metamath Proof Explorer


Theorem ismri2dad

Description: Consequence of a set in a Moore system being independent. Deduction form. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses ismri2dad.1
|- N = ( mrCls ` A )
ismri2dad.2
|- I = ( mrInd ` A )
ismri2dad.3
|- ( ph -> A e. ( Moore ` X ) )
ismri2dad.4
|- ( ph -> S e. I )
ismri2dad.5
|- ( ph -> Y e. S )
Assertion ismri2dad
|- ( ph -> -. Y e. ( N ` ( S \ { Y } ) ) )

Proof

Step Hyp Ref Expression
1 ismri2dad.1
 |-  N = ( mrCls ` A )
2 ismri2dad.2
 |-  I = ( mrInd ` A )
3 ismri2dad.3
 |-  ( ph -> A e. ( Moore ` X ) )
4 ismri2dad.4
 |-  ( ph -> S e. I )
5 ismri2dad.5
 |-  ( ph -> Y e. S )
6 2 3 4 mrissd
 |-  ( ph -> S C_ X )
7 1 2 3 6 ismri2d
 |-  ( ph -> ( S e. I <-> A. x e. S -. x e. ( N ` ( S \ { x } ) ) ) )
8 4 7 mpbid
 |-  ( ph -> A. x e. S -. x e. ( N ` ( S \ { x } ) ) )
9 simpr
 |-  ( ( ph /\ x = Y ) -> x = Y )
10 9 sneqd
 |-  ( ( ph /\ x = Y ) -> { x } = { Y } )
11 10 difeq2d
 |-  ( ( ph /\ x = Y ) -> ( S \ { x } ) = ( S \ { Y } ) )
12 11 fveq2d
 |-  ( ( ph /\ x = Y ) -> ( N ` ( S \ { x } ) ) = ( N ` ( S \ { Y } ) ) )
13 9 12 eleq12d
 |-  ( ( ph /\ x = Y ) -> ( x e. ( N ` ( S \ { x } ) ) <-> Y e. ( N ` ( S \ { Y } ) ) ) )
14 13 notbid
 |-  ( ( ph /\ x = Y ) -> ( -. x e. ( N ` ( S \ { x } ) ) <-> -. Y e. ( N ` ( S \ { Y } ) ) ) )
15 5 14 rspcdv
 |-  ( ph -> ( A. x e. S -. x e. ( N ` ( S \ { x } ) ) -> -. Y e. ( N ` ( S \ { Y } ) ) ) )
16 8 15 mpd
 |-  ( ph -> -. Y e. ( N ` ( S \ { Y } ) ) )