| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mrieqvd.1 |
|- ( ph -> A e. ( Moore ` X ) ) |
| 2 |
|
mrieqvd.2 |
|- N = ( mrCls ` A ) |
| 3 |
|
mrieqvd.3 |
|- I = ( mrInd ` A ) |
| 4 |
|
mrieqvd.4 |
|- ( ph -> S C_ X ) |
| 5 |
2 3 1 4
|
ismri2d |
|- ( ph -> ( S e. I <-> A. x e. S -. x e. ( N ` ( S \ { x } ) ) ) ) |
| 6 |
1
|
adantr |
|- ( ( ph /\ x e. S ) -> A e. ( Moore ` X ) ) |
| 7 |
4
|
adantr |
|- ( ( ph /\ x e. S ) -> S C_ X ) |
| 8 |
|
simpr |
|- ( ( ph /\ x e. S ) -> x e. S ) |
| 9 |
6 2 7 8
|
mrieqvlemd |
|- ( ( ph /\ x e. S ) -> ( x e. ( N ` ( S \ { x } ) ) <-> ( N ` ( S \ { x } ) ) = ( N ` S ) ) ) |
| 10 |
9
|
necon3bbid |
|- ( ( ph /\ x e. S ) -> ( -. x e. ( N ` ( S \ { x } ) ) <-> ( N ` ( S \ { x } ) ) =/= ( N ` S ) ) ) |
| 11 |
10
|
ralbidva |
|- ( ph -> ( A. x e. S -. x e. ( N ` ( S \ { x } ) ) <-> A. x e. S ( N ` ( S \ { x } ) ) =/= ( N ` S ) ) ) |
| 12 |
5 11
|
bitrd |
|- ( ph -> ( S e. I <-> A. x e. S ( N ` ( S \ { x } ) ) =/= ( N ` S ) ) ) |