| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mrieqvd.1 |
|- ( ph -> A e. ( Moore ` X ) ) |
| 2 |
|
mrieqvd.2 |
|- N = ( mrCls ` A ) |
| 3 |
|
mrieqvd.3 |
|- I = ( mrInd ` A ) |
| 4 |
|
mrieqvd.4 |
|- ( ph -> S C_ X ) |
| 5 |
|
pssnel |
|- ( s C. S -> E. x ( x e. S /\ -. x e. s ) ) |
| 6 |
5
|
3ad2ant3 |
|- ( ( ph /\ S e. I /\ s C. S ) -> E. x ( x e. S /\ -. x e. s ) ) |
| 7 |
1
|
3ad2ant1 |
|- ( ( ph /\ S e. I /\ s C. S ) -> A e. ( Moore ` X ) ) |
| 8 |
7
|
adantr |
|- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> A e. ( Moore ` X ) ) |
| 9 |
|
simprr |
|- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> -. x e. s ) |
| 10 |
|
difsnb |
|- ( -. x e. s <-> ( s \ { x } ) = s ) |
| 11 |
9 10
|
sylib |
|- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> ( s \ { x } ) = s ) |
| 12 |
|
simpl3 |
|- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> s C. S ) |
| 13 |
12
|
pssssd |
|- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> s C_ S ) |
| 14 |
13
|
ssdifd |
|- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> ( s \ { x } ) C_ ( S \ { x } ) ) |
| 15 |
11 14
|
eqsstrrd |
|- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> s C_ ( S \ { x } ) ) |
| 16 |
|
simpl2 |
|- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> S e. I ) |
| 17 |
3 8 16
|
mrissd |
|- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> S C_ X ) |
| 18 |
17
|
ssdifssd |
|- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> ( S \ { x } ) C_ X ) |
| 19 |
8 2 15 18
|
mrcssd |
|- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> ( N ` s ) C_ ( N ` ( S \ { x } ) ) ) |
| 20 |
|
difssd |
|- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> ( S \ { x } ) C_ S ) |
| 21 |
8 2 20 17
|
mrcssd |
|- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> ( N ` ( S \ { x } ) ) C_ ( N ` S ) ) |
| 22 |
8 2 17
|
mrcssidd |
|- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> S C_ ( N ` S ) ) |
| 23 |
|
simprl |
|- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> x e. S ) |
| 24 |
22 23
|
sseldd |
|- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> x e. ( N ` S ) ) |
| 25 |
2 3 8 16 23
|
ismri2dad |
|- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> -. x e. ( N ` ( S \ { x } ) ) ) |
| 26 |
21 24 25
|
ssnelpssd |
|- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> ( N ` ( S \ { x } ) ) C. ( N ` S ) ) |
| 27 |
19 26
|
sspsstrd |
|- ( ( ( ph /\ S e. I /\ s C. S ) /\ ( x e. S /\ -. x e. s ) ) -> ( N ` s ) C. ( N ` S ) ) |
| 28 |
6 27
|
exlimddv |
|- ( ( ph /\ S e. I /\ s C. S ) -> ( N ` s ) C. ( N ` S ) ) |
| 29 |
28
|
3expia |
|- ( ( ph /\ S e. I ) -> ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) |
| 30 |
29
|
alrimiv |
|- ( ( ph /\ S e. I ) -> A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) |
| 31 |
30
|
ex |
|- ( ph -> ( S e. I -> A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) ) |
| 32 |
1
|
adantr |
|- ( ( ph /\ x e. S ) -> A e. ( Moore ` X ) ) |
| 33 |
32
|
elfvexd |
|- ( ( ph /\ x e. S ) -> X e. _V ) |
| 34 |
4
|
adantr |
|- ( ( ph /\ x e. S ) -> S C_ X ) |
| 35 |
33 34
|
ssexd |
|- ( ( ph /\ x e. S ) -> S e. _V ) |
| 36 |
35
|
difexd |
|- ( ( ph /\ x e. S ) -> ( S \ { x } ) e. _V ) |
| 37 |
|
simp1r |
|- ( ( ( ph /\ x e. S ) /\ s = ( S \ { x } ) /\ ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) -> x e. S ) |
| 38 |
|
difsnpss |
|- ( x e. S <-> ( S \ { x } ) C. S ) |
| 39 |
37 38
|
sylib |
|- ( ( ( ph /\ x e. S ) /\ s = ( S \ { x } ) /\ ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) -> ( S \ { x } ) C. S ) |
| 40 |
|
simp2 |
|- ( ( ( ph /\ x e. S ) /\ s = ( S \ { x } ) /\ ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) -> s = ( S \ { x } ) ) |
| 41 |
40
|
psseq1d |
|- ( ( ( ph /\ x e. S ) /\ s = ( S \ { x } ) /\ ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) -> ( s C. S <-> ( S \ { x } ) C. S ) ) |
| 42 |
39 41
|
mpbird |
|- ( ( ( ph /\ x e. S ) /\ s = ( S \ { x } ) /\ ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) -> s C. S ) |
| 43 |
|
simp3 |
|- ( ( ( ph /\ x e. S ) /\ s = ( S \ { x } ) /\ ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) -> ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) |
| 44 |
42 43
|
mpd |
|- ( ( ( ph /\ x e. S ) /\ s = ( S \ { x } ) /\ ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) -> ( N ` s ) C. ( N ` S ) ) |
| 45 |
40
|
fveq2d |
|- ( ( ( ph /\ x e. S ) /\ s = ( S \ { x } ) /\ ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) -> ( N ` s ) = ( N ` ( S \ { x } ) ) ) |
| 46 |
45
|
psseq1d |
|- ( ( ( ph /\ x e. S ) /\ s = ( S \ { x } ) /\ ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) -> ( ( N ` s ) C. ( N ` S ) <-> ( N ` ( S \ { x } ) ) C. ( N ` S ) ) ) |
| 47 |
44 46
|
mpbid |
|- ( ( ( ph /\ x e. S ) /\ s = ( S \ { x } ) /\ ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) -> ( N ` ( S \ { x } ) ) C. ( N ` S ) ) |
| 48 |
47
|
3expia |
|- ( ( ( ph /\ x e. S ) /\ s = ( S \ { x } ) ) -> ( ( s C. S -> ( N ` s ) C. ( N ` S ) ) -> ( N ` ( S \ { x } ) ) C. ( N ` S ) ) ) |
| 49 |
36 48
|
spcimdv |
|- ( ( ph /\ x e. S ) -> ( A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) -> ( N ` ( S \ { x } ) ) C. ( N ` S ) ) ) |
| 50 |
49
|
3impia |
|- ( ( ph /\ x e. S /\ A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) -> ( N ` ( S \ { x } ) ) C. ( N ` S ) ) |
| 51 |
50
|
pssned |
|- ( ( ph /\ x e. S /\ A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) -> ( N ` ( S \ { x } ) ) =/= ( N ` S ) ) |
| 52 |
51
|
3com23 |
|- ( ( ph /\ A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) /\ x e. S ) -> ( N ` ( S \ { x } ) ) =/= ( N ` S ) ) |
| 53 |
1
|
3ad2ant1 |
|- ( ( ph /\ A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) /\ x e. S ) -> A e. ( Moore ` X ) ) |
| 54 |
4
|
3ad2ant1 |
|- ( ( ph /\ A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) /\ x e. S ) -> S C_ X ) |
| 55 |
|
simp3 |
|- ( ( ph /\ A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) /\ x e. S ) -> x e. S ) |
| 56 |
53 2 54 55
|
mrieqvlemd |
|- ( ( ph /\ A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) /\ x e. S ) -> ( x e. ( N ` ( S \ { x } ) ) <-> ( N ` ( S \ { x } ) ) = ( N ` S ) ) ) |
| 57 |
56
|
necon3bbid |
|- ( ( ph /\ A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) /\ x e. S ) -> ( -. x e. ( N ` ( S \ { x } ) ) <-> ( N ` ( S \ { x } ) ) =/= ( N ` S ) ) ) |
| 58 |
52 57
|
mpbird |
|- ( ( ph /\ A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) /\ x e. S ) -> -. x e. ( N ` ( S \ { x } ) ) ) |
| 59 |
58
|
3expia |
|- ( ( ph /\ A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) -> ( x e. S -> -. x e. ( N ` ( S \ { x } ) ) ) ) |
| 60 |
59
|
ralrimiv |
|- ( ( ph /\ A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) -> A. x e. S -. x e. ( N ` ( S \ { x } ) ) ) |
| 61 |
60
|
ex |
|- ( ph -> ( A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) -> A. x e. S -. x e. ( N ` ( S \ { x } ) ) ) ) |
| 62 |
2 3 1 4
|
ismri2d |
|- ( ph -> ( S e. I <-> A. x e. S -. x e. ( N ` ( S \ { x } ) ) ) ) |
| 63 |
61 62
|
sylibrd |
|- ( ph -> ( A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) -> S e. I ) ) |
| 64 |
31 63
|
impbid |
|- ( ph -> ( S e. I <-> A. s ( s C. S -> ( N ` s ) C. ( N ` S ) ) ) ) |