Metamath Proof Explorer


Theorem mrieqv2d

Description: In a Moore system, a set is independent if and only if all its proper subsets have closure properly contained in the closure of the set. Part of Proposition 4.1.3 in FaureFrolicher p. 83. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses mrieqvd.1 φ A Moore X
mrieqvd.2 N = mrCls A
mrieqvd.3 I = mrInd A
mrieqvd.4 φ S X
Assertion mrieqv2d φ S I s s S N s N S

Proof

Step Hyp Ref Expression
1 mrieqvd.1 φ A Moore X
2 mrieqvd.2 N = mrCls A
3 mrieqvd.3 I = mrInd A
4 mrieqvd.4 φ S X
5 pssnel s S x x S ¬ x s
6 5 3ad2ant3 φ S I s S x x S ¬ x s
7 1 3ad2ant1 φ S I s S A Moore X
8 7 adantr φ S I s S x S ¬ x s A Moore X
9 simprr φ S I s S x S ¬ x s ¬ x s
10 difsnb ¬ x s s x = s
11 9 10 sylib φ S I s S x S ¬ x s s x = s
12 simpl3 φ S I s S x S ¬ x s s S
13 12 pssssd φ S I s S x S ¬ x s s S
14 13 ssdifd φ S I s S x S ¬ x s s x S x
15 11 14 eqsstrrd φ S I s S x S ¬ x s s S x
16 simpl2 φ S I s S x S ¬ x s S I
17 3 8 16 mrissd φ S I s S x S ¬ x s S X
18 17 ssdifssd φ S I s S x S ¬ x s S x X
19 8 2 15 18 mrcssd φ S I s S x S ¬ x s N s N S x
20 difssd φ S I s S x S ¬ x s S x S
21 8 2 20 17 mrcssd φ S I s S x S ¬ x s N S x N S
22 8 2 17 mrcssidd φ S I s S x S ¬ x s S N S
23 simprl φ S I s S x S ¬ x s x S
24 22 23 sseldd φ S I s S x S ¬ x s x N S
25 2 3 8 16 23 ismri2dad φ S I s S x S ¬ x s ¬ x N S x
26 21 24 25 ssnelpssd φ S I s S x S ¬ x s N S x N S
27 19 26 sspsstrd φ S I s S x S ¬ x s N s N S
28 6 27 exlimddv φ S I s S N s N S
29 28 3expia φ S I s S N s N S
30 29 alrimiv φ S I s s S N s N S
31 30 ex φ S I s s S N s N S
32 1 adantr φ x S A Moore X
33 32 elfvexd φ x S X V
34 4 adantr φ x S S X
35 33 34 ssexd φ x S S V
36 difexg S V S x V
37 35 36 syl φ x S S x V
38 simp1r φ x S s = S x s S N s N S x S
39 difsnpss x S S x S
40 38 39 sylib φ x S s = S x s S N s N S S x S
41 simp2 φ x S s = S x s S N s N S s = S x
42 41 psseq1d φ x S s = S x s S N s N S s S S x S
43 40 42 mpbird φ x S s = S x s S N s N S s S
44 simp3 φ x S s = S x s S N s N S s S N s N S
45 43 44 mpd φ x S s = S x s S N s N S N s N S
46 41 fveq2d φ x S s = S x s S N s N S N s = N S x
47 46 psseq1d φ x S s = S x s S N s N S N s N S N S x N S
48 45 47 mpbid φ x S s = S x s S N s N S N S x N S
49 48 3expia φ x S s = S x s S N s N S N S x N S
50 37 49 spcimdv φ x S s s S N s N S N S x N S
51 50 3impia φ x S s s S N s N S N S x N S
52 51 pssned φ x S s s S N s N S N S x N S
53 52 3com23 φ s s S N s N S x S N S x N S
54 1 3ad2ant1 φ s s S N s N S x S A Moore X
55 4 3ad2ant1 φ s s S N s N S x S S X
56 simp3 φ s s S N s N S x S x S
57 54 2 55 56 mrieqvlemd φ s s S N s N S x S x N S x N S x = N S
58 57 necon3bbid φ s s S N s N S x S ¬ x N S x N S x N S
59 53 58 mpbird φ s s S N s N S x S ¬ x N S x
60 59 3expia φ s s S N s N S x S ¬ x N S x
61 60 ralrimiv φ s s S N s N S x S ¬ x N S x
62 61 ex φ s s S N s N S x S ¬ x N S x
63 2 3 1 4 ismri2d φ S I x S ¬ x N S x
64 62 63 sylibrd φ s s S N s N S S I
65 31 64 impbid φ S I s s S N s N S