Metamath Proof Explorer


Theorem mrieqvlemd

Description: In a Moore system, if Y is a member of S , ( S \ { Y } ) and S have the same closure if and only if Y is in the closure of ( S \ { Y } ) . Used in the proof of mrieqvd and mrieqv2d . Deduction form. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses mrieqvlemd.1 φAMooreX
mrieqvlemd.2 N=mrClsA
mrieqvlemd.3 φSX
mrieqvlemd.4 φYS
Assertion mrieqvlemd φYNSYNSY=NS

Proof

Step Hyp Ref Expression
1 mrieqvlemd.1 φAMooreX
2 mrieqvlemd.2 N=mrClsA
3 mrieqvlemd.3 φSX
4 mrieqvlemd.4 φYS
5 1 adantr φYNSYAMooreX
6 undif1 SYY=SY
7 3 adantr φYNSYSX
8 7 ssdifssd φYNSYSYX
9 5 2 8 mrcssidd φYNSYSYNSY
10 simpr φYNSYYNSY
11 10 snssd φYNSYYNSY
12 9 11 unssd φYNSYSYYNSY
13 6 12 eqsstrrid φYNSYSYNSY
14 13 unssad φYNSYSNSY
15 difssd φYNSYSYS
16 5 2 14 15 mressmrcd φYNSYNS=NSY
17 16 eqcomd φYNSYNSY=NS
18 1 2 3 mrcssidd φSNS
19 18 4 sseldd φYNS
20 19 adantr φNSY=NSYNS
21 simpr φNSY=NSNSY=NS
22 20 21 eleqtrrd φNSY=NSYNSY
23 17 22 impbida φYNSYNSY=NS