| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mrieqvlemd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
| 2 |
|
mrieqvlemd.2 |
⊢ 𝑁 = ( mrCls ‘ 𝐴 ) |
| 3 |
|
mrieqvlemd.3 |
⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) |
| 4 |
|
mrieqvlemd.4 |
⊢ ( 𝜑 → 𝑌 ∈ 𝑆 ) |
| 5 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
| 6 |
|
undif1 |
⊢ ( ( 𝑆 ∖ { 𝑌 } ) ∪ { 𝑌 } ) = ( 𝑆 ∪ { 𝑌 } ) |
| 7 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) → 𝑆 ⊆ 𝑋 ) |
| 8 |
7
|
ssdifssd |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) → ( 𝑆 ∖ { 𝑌 } ) ⊆ 𝑋 ) |
| 9 |
5 2 8
|
mrcssidd |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) → ( 𝑆 ∖ { 𝑌 } ) ⊆ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) |
| 10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) → 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) |
| 11 |
10
|
snssd |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) → { 𝑌 } ⊆ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) |
| 12 |
9 11
|
unssd |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) → ( ( 𝑆 ∖ { 𝑌 } ) ∪ { 𝑌 } ) ⊆ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) |
| 13 |
6 12
|
eqsstrrid |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) → ( 𝑆 ∪ { 𝑌 } ) ⊆ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) |
| 14 |
13
|
unssad |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) → 𝑆 ⊆ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) |
| 15 |
|
difssd |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) → ( 𝑆 ∖ { 𝑌 } ) ⊆ 𝑆 ) |
| 16 |
5 2 14 15
|
mressmrcd |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) → ( 𝑁 ‘ 𝑆 ) = ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) |
| 17 |
16
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) → ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) = ( 𝑁 ‘ 𝑆 ) ) |
| 18 |
1 2 3
|
mrcssidd |
⊢ ( 𝜑 → 𝑆 ⊆ ( 𝑁 ‘ 𝑆 ) ) |
| 19 |
18 4
|
sseldd |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑁 ‘ 𝑆 ) ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) = ( 𝑁 ‘ 𝑆 ) ) → 𝑌 ∈ ( 𝑁 ‘ 𝑆 ) ) |
| 21 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) = ( 𝑁 ‘ 𝑆 ) ) → ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) = ( 𝑁 ‘ 𝑆 ) ) |
| 22 |
20 21
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) = ( 𝑁 ‘ 𝑆 ) ) → 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ) |
| 23 |
17 22
|
impbida |
⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) ↔ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑌 } ) ) = ( 𝑁 ‘ 𝑆 ) ) ) |