Metamath Proof Explorer


Theorem addassd

Description: Associative law for addition. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses addcld.1 φ A
addcld.2 φ B
addassd.3 φ C
Assertion addassd φ A + B + C = A + B + C

Proof

Step Hyp Ref Expression
1 addcld.1 φ A
2 addcld.2 φ B
3 addassd.3 φ C
4 addass A B C A + B + C = A + B + C
5 1 2 3 4 syl3anc φ A + B + C = A + B + C