Metamath Proof Explorer
Description: Associative law for addition. (Contributed by Mario Carneiro, 27-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
addcld.1 |
|
|
|
addcld.2 |
|
|
|
addassd.3 |
|
|
Assertion |
addassd |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
addcld.1 |
|
2 |
|
addcld.2 |
|
3 |
|
addassd.3 |
|
4 |
|
addass |
|
5 |
1 2 3 4
|
syl3anc |
|