Metamath Proof Explorer


Theorem addasspr

Description: Addition of positive reals is associative. Proposition 9-3.5(i) of Gleason p. 123. (Contributed by NM, 18-Mar-1996) (New usage is discouraged.)

Ref Expression
Assertion addasspr A+𝑷B+𝑷C=A+𝑷B+𝑷C

Proof

Step Hyp Ref Expression
1 df-plp +𝑷=w𝑷,v𝑷x|ywzvx=y+𝑸z
2 addclnq y𝑸z𝑸y+𝑸z𝑸
3 dmplp dom+𝑷=𝑷×𝑷
4 addclpr f𝑷g𝑷f+𝑷g𝑷
5 addassnq f+𝑸g+𝑸h=f+𝑸g+𝑸h
6 1 2 3 4 5 genpass A+𝑷B+𝑷C=A+𝑷B+𝑷C