Metamath Proof Explorer


Theorem adddird

Description: Distributive law (right-distributivity). (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses addcld.1 φ A
addcld.2 φ B
addassd.3 φ C
Assertion adddird φ A + B C = A C + B C

Proof

Step Hyp Ref Expression
1 addcld.1 φ A
2 addcld.2 φ B
3 addassd.3 φ C
4 adddir A B C A + B C = A C + B C
5 1 2 3 4 syl3anc φ A + B C = A C + B C