Metamath Proof Explorer


Theorem adddmmbl2

Description: If two functions have domains in the sigma-algebra, the domain of their addition also belongs to the sigma-algebra. This is the first statement of Proposition 121H of Fremlin1, p. 39. Note: While the theorem in the book assumes the functions are sigma-measurable, this assumption is unnecessary for the part concerning their addition. (Contributed by Glauco Siliprandi, 30-Dec-2024)

Ref Expression
Hypotheses adddmmbl2.1 _ x F
adddmmbl2.2 _ x G
adddmmbl2.3 φ S SAlg
adddmmbl2.4 φ dom F S
adddmmbl2.5 φ dom G S
adddmmbl2.6 H = x dom F dom G F x + G x
Assertion adddmmbl2 φ dom H S

Proof

Step Hyp Ref Expression
1 adddmmbl2.1 _ x F
2 adddmmbl2.2 _ x G
3 adddmmbl2.3 φ S SAlg
4 adddmmbl2.4 φ dom F S
5 adddmmbl2.5 φ dom G S
6 adddmmbl2.6 H = x dom F dom G F x + G x
7 1 nfdm _ x dom F
8 2 nfdm _ x dom G
9 7 8 nfin _ x dom F dom G
10 ovex F x + G x V
11 9 10 6 dmmptif dom H = dom F dom G
12 11 a1i φ dom H = dom F dom G
13 3 4 5 salincld φ dom F dom G S
14 12 13 eqeltrd φ dom H S