Metamath Proof Explorer


Theorem muldmmbl

Description: If two functions have domains in the sigma-algebra, the domain of their multiplication also belongs to the sigma-algebra. This is the second statement of Proposition 121H of Fremlin1, p. 39. Note: While the theorem in the book assumes the functions are sigma-measurable, this assumption is unnecessary for the part concerning their multiplication. (Contributed by Glauco Siliprandi, 30-Dec-2024)

Ref Expression
Hypotheses muldmmbl.1 x φ
muldmmbl.2 _ x A
muldmmbl.3 _ x B
muldmmbl.4 φ S SAlg
muldmmbl.5 φ A S
muldmmbl.6 φ B S
Assertion muldmmbl φ dom x A B C D S

Proof

Step Hyp Ref Expression
1 muldmmbl.1 x φ
2 muldmmbl.2 _ x A
3 muldmmbl.3 _ x B
4 muldmmbl.4 φ S SAlg
5 muldmmbl.5 φ A S
6 muldmmbl.6 φ B S
7 2 3 nfin _ x A B
8 eqid x A B C D = x A B C D
9 ovexd φ x A B C D V
10 1 7 8 9 dmmptdff φ dom x A B C D = A B
11 4 5 6 salincld φ A B S
12 10 11 eqeltrd φ dom x A B C D S