Metamath Proof Explorer


Theorem muldmmbl

Description: If two functions have domains in the sigma-algebra, the domain of their multiplication also belongs to the sigma-algebra. This is the second statement of Proposition 121H of Fremlin1, p. 39. Note: While the theorem in the book assumes the functions are sigma-measurable, this assumption is unnecessary for the part concerning their multiplication. (Contributed by Glauco Siliprandi, 30-Dec-2024)

Ref Expression
Hypotheses muldmmbl.1
|- F/ x ph
muldmmbl.2
|- F/_ x A
muldmmbl.3
|- F/_ x B
muldmmbl.4
|- ( ph -> S e. SAlg )
muldmmbl.5
|- ( ph -> A e. S )
muldmmbl.6
|- ( ph -> B e. S )
Assertion muldmmbl
|- ( ph -> dom ( x e. ( A i^i B ) |-> ( C x. D ) ) e. S )

Proof

Step Hyp Ref Expression
1 muldmmbl.1
 |-  F/ x ph
2 muldmmbl.2
 |-  F/_ x A
3 muldmmbl.3
 |-  F/_ x B
4 muldmmbl.4
 |-  ( ph -> S e. SAlg )
5 muldmmbl.5
 |-  ( ph -> A e. S )
6 muldmmbl.6
 |-  ( ph -> B e. S )
7 2 3 nfin
 |-  F/_ x ( A i^i B )
8 eqid
 |-  ( x e. ( A i^i B ) |-> ( C x. D ) ) = ( x e. ( A i^i B ) |-> ( C x. D ) )
9 ovexd
 |-  ( ( ph /\ x e. ( A i^i B ) ) -> ( C x. D ) e. _V )
10 1 7 8 9 dmmptdff
 |-  ( ph -> dom ( x e. ( A i^i B ) |-> ( C x. D ) ) = ( A i^i B ) )
11 4 5 6 salincld
 |-  ( ph -> ( A i^i B ) e. S )
12 10 11 eqeltrd
 |-  ( ph -> dom ( x e. ( A i^i B ) |-> ( C x. D ) ) e. S )